#点云分类
ULIP - 多模态预训练框架实现3D数据理解
ULIP3D理解多模态预训练点云分类零样本分类Github开源项目
ULIP是一种多模态预训练框架,集成了语言、图像和点云数据以增强3D理解能力。该框架适用于多种3D骨干网络,如Pointnet2和PointBERT等,无需增加处理延迟。ULIP-2在此基础上进行了扩展,提高了预训练的可扩展性。项目开源了预训练模型、数据集和使用指南,为3D数据分析奠定了基础。
ReCon - 融合对比和生成方法的3D表示学习框架
ReCon3D表示学习点云分类零样本学习少样本学习Github开源项目
ReCon是一个融合对比学习和生成式预训练的3D表示学习框架,有效解决了数据不足和表示过拟合问题。该框架在3D点云分类、少样本学习和零样本迁移等任务中表现出色,在ScanObjectNN数据集上达到91.26%的分类准确率。ReCon展现了在3D表示学习领域的先进性能,为相关研究提供了新的思路。
SimpleView - 高效点云形状分类的新基线方法
点云分类SimpleView深度学习3D模型机器学习Github开源项目
SimpleView项目重新审视点云形状分类问题,提出基于多视图的简单高效方法。在ModelNet40和ScanObjectNN等标准3D点云数据集上实现最先进性能,为点云处理和机器学习研究提供新基准。项目开源代码和模型,便于复现和进一步研究。