#概率模型
gluonts - 基于深度学习的概率时间序列建模工具包
GluonTS时间序列预测Python深度学习概率模型Github开源项目
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
bayesian-flow-networks - 将贝叶斯方法与流网络相结合的生成模型新框架
Bayesian Flow Networks机器学习深度学习概率模型生成模型Github开源项目
Bayesian Flow Networks是一个结合贝叶斯方法和流网络的生成模型框架。项目提供完整代码实现,包含连续和离散数据的贝叶斯流定义,以及连续时间和离散时间的损失函数。支持MNIST、CIFAR-10和text8等数据集的训练、测试和采样。此框架在图像和文本生成任务中表现出色,为生成模型研究开辟新方向。
botorch - PyTorch驱动的模块化贝叶斯优化库
BoTorch贝叶斯优化PyTorch机器学习概率模型Github开源项目
BoTorch是一个基于PyTorch的贝叶斯优化库,提供模块化接口用于组合概率模型、采集函数和优化器。该库充分利用PyTorch的自动微分和并行计算能力,支持基于蒙特卡洛的采集函数,并与GPyTorch深度集成。BoTorch主要面向贝叶斯优化和AI领域的研究人员及专业实践者,为实现和测试新算法提供灵活高效的平台。
ml-pen-and-paper-exercises - 机器学习经典算法笔算练习集
机器学习练习集线性代数概率模型变分推断Github开源项目
ml-pen-and-paper-exercises项目提供机器学习笔算练习题及解答,内容包括线性代数、优化、图模型和推断等主题。习题配有详细解析,适用于自学和教学。项目涵盖隐马尔可夫模型推断、变分推断和蒙特卡洛积分等专业内容。练习集在arXiv发布PDF版本,GitHub仓库开源代码。项目使用知识共享协议,支持学习和贡献。
dynamax - JAX驱动的概率状态空间模型库
状态空间模型JAX隐马尔可夫模型高斯状态空间模型概率模型Github开源项目
Dynamax是一个利用JAX开发的概率状态空间模型库,包含隐马尔可夫模型和线性高斯状态空间模型等。该库提供低级推理算法和面向对象接口,与JAX生态系统兼容。Dynamax支持状态估计、参数估计、在线滤波、离线平滑和未来预测等功能。库中包含丰富示例和文档,便于使用和学习。
pytorch-ts - 概率时间序列预测开源框架
PyTorchTS时间序列预测深度学习概率模型PyTorchGithub开源项目
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
BayesianDeepLearning-Survey - 贝叶斯深度学习的不断更新综述
贝叶斯深度学习深度学习机器学习人工智能概率模型Github开源项目
本项目是贝叶斯深度学习(BDL)的持续更新综述,扩展自ACM Computing Surveys 2020年发表的论文。涵盖BDL在推荐系统、领域适应、医疗保健、自然语言处理、计算机视觉等领域的应用。通过定期更新,为研究人员提供BDL最新进展概述,展示这一框架在多个应用中的潜力。
相关文章