#PyTorch
fastbook - fastai与PyTorch的深度学习教程
fastaiPyTorch深度学习MOOCGoogle ColabGithub开源项目
本项目提供涵盖fastai和PyTorch的深度学习教程,适合初学者与进阶用户。可通过Google Colab在线运行,无需本地配置Python环境。项目还包括MOOC课程及相关书籍,系统化帮助用户学习深度学习技术。
pytorch-handbook - 使用PyTorch进行深度学习开发的用户的系统化的入门指南
PyTorch深度学习神经网络卷积神经网络循环神经网络Github开源项目
本开源书籍为使用PyTorch进行深度学习开发的用户提供系统化的入门指南。教程内容覆盖了从环境搭建到高级应用的各个方面,包括PyTorch基础、深度学习数学原理、神经网络、卷积神经网络、循环神经网络等,还包含实践案例与多GPU并行训练技巧。书籍持续更新,与PyTorch版本同步,适合所有深度学习研究者。
fastai - 一个为从业者提供快速提供在标准深度学习领域中提供最先进的高级组件,并提供可以混合和匹配的低级组件构建新方法的深度学习库
fastaiPyTorch深度学习计算机视觉GPU优化Github开源项目
fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。
annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
labml.aiPyTorchTransformerGANReinforcement LearningGithub开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
keras - 多后端支持的深度学习框架,兼容JAX、TensorFlow和PyTorch
Keras 3深度学习框架JAXTensorFlowPyTorchGithub开源项目
Keras 3 提供高效的模型开发,支持计算机视觉、自然语言处理等任务。选择最快的后端(如JAX),性能提升高达350%。无缝扩展,从本地到大规模集群,适合企业和初创团队。安装简单,支持GPU,兼容tf.keras代码,避免框架锁定。
CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPPyTorch图像识别自然语言处理模型训练Github开源项目
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
allennlp - 基于PyTorch的Apache 2.0自然语言处理研究库
AllenNLPAI2 TangoPyTorchNLPOptunaGithub开源项目
AllenNLP是一个基于PyTorch的Apache 2.0自然语言处理研究库,专注于开发先进的深度学习模型。该项目已进入维护模式,并将在2022年12月16日前继续修复问题和响应用户提问。推荐的替代项目包括AI2 Tango、allennlp-light、flair和torchmetrics,以帮助用户更好地管理实验和使用预训练模型。
pix2pix - 利用条件对抗网络的图像到图像翻译实现
pix2pixImage-to-Image TranslationConditional Adversarial NetworksCycleGANPyTorchGithub开源项目
使用条件对抗网络实现图像到图像翻译,支持从建筑立面生成到日夜转换等多种任务。该项目能在小数据集上快速产生良好结果,并提供改进版的PyTorch实现。支持多种数据集和模型,并附有详细的安装、训练和测试指南。
Pytorch-UNet - PyTorch实现的高效U-Net语义分割模型
U-NetPyTorch语义分割深度学习CarvanaGithub开源项目
Pytorch-UNet项目提供定制的U-Net实现,支持多类别分割任务,包括车体遮罩、肖像分割和医学图像分割。兼容PyTorch 1.13及以上版本,提供Docker镜像和预训练模型,便于集成和使用。模型在高分辨率图像上训练,取得了0.988的Dice系数,并支持自动混合精度,可通过Weights & Biases实时监控训练进度。
attention-is-all-you-need-pytorch - PyTorch版Transformer模型,采用自注意力机制
Transformer modelPyTorch自注意力机制WMT 2014 英德翻译BPEGithub开源项目
本项目基于《Attention is All You Need》论文实现了PyTorch版Transformer模型,利用自注意力机制替代传统的卷积和循环结构,在WMT 2014英德翻译任务中表现出色。项目支持模型训练和翻译,部分字节对编码相关部分尚未完全测试,仍在开发中。提供详细的教程,包括数据预处理、模型训练和测试步骤,为用户提供全面指导。
pytorch-book - PyTorch 1.8入门与高级应用指南
PyTorch深度学习神经网络生成对抗网络自然语言处理Github开源项目
这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。
YOLOX - 无锚目标检测算法YOLOX,设计简洁性能优越
YOLOXPyTorchMegEngineanchor-freeobject detectionGithub开源项目
YOLOX是一种无锚版YOLO,设计简洁,性能更优,旨在弥合研究与工业界的差距。项目基于PyTorch实现,并提供MegEngine版本。支持可视化工具、JIT编译、快速训练优化等多项更新。未来计划推出YOLOX-P6、大模型、Objects365预训练和Transformer模块等功能。通过融合ONNX、TensorRT、OpenVINO等多种部署方案,满足不同应用场景需求。
PyTorch-VAE - PyTorch中多种变分自编码器的实现与训练示例
PyTorch VAE变分自编码器PyTorch深度学习图像生成Github开源项目
PyTorch-VAE项目实现了多种变分自编码器(VAE),专注于结果的可重复性,包括从Vanilla VAE到VQ-VAE的众多模型。所有模型都在CelebA数据集上训练,确保一致的对比结果。代码简洁易用,支持PyTorch和PyTorch Lightning,适合研究人员和开发者快速构建、调试和优化VAE模型。
pyro - 灵活且可扩展的概率编程库,支持大规模数据处理与自定义推理
PyroPyTorch深度概率编程Uber AILinux FoundationGithub开源项目
Pyro是基于PyTorch的深度概率编程库,具备灵活性和可扩展性。它能够表示任何可计算的概率分布,处理大规模数据集时具有较低的开销,并提供强大且可组合的抽象功能。Pyro由Uber AI最初开发,现由社区和Broad Institute团队积极维护,并在2019年成为Linux Foundation项目。其设计理念包括普适性、可扩展性和灵活性。通过高层抽象表达生成和推理模型,用户可以根据需求进行自动化或自定义推理。在机器学习和数据科学领域,Pyro提供了广泛的应用和支持。
OpenNMT-py - 开源的神经机器翻译与大型语言模型框架
OpenNMT-pyEoleNeural Machine TranslationPyTorchLLM支持Github开源项目
OpenNMT-py是基于PyTorch的开源神经机器翻译和语言模型框架,适用于研究和生产。支持大语言模型转换、量化以及多GPU并行。提供教程、文档和社区支持,适合翻译、总结等多种NLP任务。最新版本引入了多查询注意力机制和线性去偏等新功能。
caffe2 - 轻量级、模块化和可扩展的深度学习框架
Caffe2PyTorch深度学习框架模块化高性能Github开源项目
Caffe2是一个以表达力、速度和模块化为设计理念的轻量级、模块化和可扩展的深度学习框架。欲了解更多信息,请访问caffe2.ai。
ssd.pytorch - PyTorch实现的高效SSD目标检测器,兼容多数据集与实时可视化
SSDPyTorch训练数据集评估Github开源项目
该项目实现了基于PyTorch的SSD目标检测器,支持VOC和COCO数据集,并可使用Visdom进行训练过程中的实时损失可视化。页面包含详细的安装、训练和评估指南,并提供预训练模型的使用说明。项目展示了高效性能,并包含未来功能更新计划,帮助开发者快速上手并扩展应用。
composer - 适用于大规模模型的高效深度学习训练框架
MosaicMLComposer深度学习分布式训练PyTorchGithub开源项目
Composer 是 MosaicML 开发的开源深度学习训练库,基于 PyTorch 构建,专为大规模模型的高效训练设计。支持语言模型、扩散模型和卷积神经网络等,简化了并行化配置、数据加载、自动恢复和内存优化。该库帮助用户快速进行深度学习实验和模型训练。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningPyTorch神经网络卷积神经网络生成对抗网络Github开源项目
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
Production-Level-Deep-Learning - 生产级深度学习系统的部署与优化工程指南
Deep LearningMachine LearningTFXTensorFlowPyTorchGithub开源项目
本项目提供全面的工程指南,指导在实际应用中部署生产级深度学习系统。涵盖数据管理、开发、训练、评估、测试和部署等关键模块,并推荐最佳实践和工具。内容借鉴Full Stack Deep Learning Bootcamp、TFX Workshop和Pipeline.ai的高级KubeFlow Meetup,确保用户应对从模型训练到生产部署的各种挑战。
MONAI - 基于PyTorch的医疗影像深度学习开源平台
MONAIPyTorch医疗成像深度学习框架开源软件Github开源项目
MONAI是一个基于PyTorch的开源平台,专注于医疗影像的深度学习。它提供灵活的数据预处理、易于集成的API、领域特定的网络和评估指标,并支持多GPU和多节点数据并行。MONAI旨在为学术、工业和临床研究者提供优化和标准化的模型创建和评估工具,促进跨领域合作。
DeepPavlov - 跨平台多功能的开源对话AI库
DeepPavlovPyTorchNLP对话系统开源Github开源项目
DeepPavlov是一个基于PyTorch的开源对话AI库,适用于生产级聊天机器人、复杂对话系统开发和自然语言处理研究。支持Linux、Windows和MacOS平台,兼容Python 3.6至3.11版本。提供丰富的预训练NLP模型,如命名实体识别、意图分类、文本问答和句子相似度等,支持CLI和Python接口,便于模型训练、评估和推断。通过REST API和Socket API实现与AWS等服务的无缝集成。
Awesome-PyTorch-Chinese - PyTorch资源,教程、视频、实战项目和书籍推荐
PyTorch教程实战视频书籍Github开源项目
详细介绍PyTorch资源,包括官方文档、教程、视频课程、NLP与CV实战项目及相关书籍,帮助各层次用户深入掌握PyTorch。
monodepth2 - 基于自监督学习的单目深度估计实现
Monodepth2深度估计PyTorch自监督学习计算机视觉Github开源项目
本项目提供了PyTorch实现的代码,用于训练和测试深度估计模型。代码采用自监督学习方法,支持单目和立体图像的深度预测。提供多种预训练模型和自定义数据集,兼容不同的图像分辨率。适用于研究和非商业用途,包含详细的设置指南、训练和评估说明。用户可通过此项目高效开发和优化深度估计模型。
thinc - 灵活轻量的深度学习库,支持多种主流框架
Thincdeep learningPyTorchTensorFlowMXNetGithub开源项目
Thinc是一款轻量级深度学习库,提供简洁的函数式编程API,支持与PyTorch、TensorFlow、MXNet等框架的集成。用户可以通过Thinc构建、配置和部署自定义模型。Thinc支持类型检查、简洁的函数式模型定义、可扩展的后台系统,并兼容Python 3.6+,适用于Linux、macOS和Windows操作系统。
DeepLearningProject - 全面教程涵盖数据集创建与深度学习
Harvard UniversityPyTorch机器学习深度学习PythonGithub开源项目
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
d2l-pytorch - MXNet代码转换为PyTorch实现的指南
Dive Into Deep LearningPyTorch深度学习线性神经网络卷积神经网络Github开源项目
本项目基于《Dive Into Deep Learning》书籍,将MXNet代码转换为PyTorch实现。内容包括安装指南、线性神经网络、多层感知器、卷积神经网络、现代卷积网络、循环神经网络和注意力机制等章节。提供详细教程和示例代码,适合使用PyTorch进行深度学习的开发者。建议克隆仓库或使用nbviewer查看notebook文件。
pytorch-summary - PyTorch模型总结和可视化工具
torchinfoPyTorch模型可视化KerasCNNGithub开源项目
pytorch-summary提供类似Keras的model.summary()功能,帮助在PyTorch中可视化和调试模型。用户可以通过pip安装或从GitHub克隆获取,轻松查看模型参数和结构,支持多种输入格式。适用于各种神经网络模型,包括CNN和VGG16,支持计算模型大小和内存需求。该工具基于MIT许可,并由社区贡献者支持和启发。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorch深度学习PyTorch机器学习编程Github开源项目
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
deep-person-reid - 深度学习人员重识别库,支持多GPU训练和跨数据集评估
TorchreidPyTorch深度学习重识别多GPU训练Github开源项目
Torchreid是一个基于PyTorch的深度学习人员重识别库,支持多GPU训练、图像和视频重识别、端到端训练与评估、多数据集训练和跨数据集评估。它易于准备数据集,支持添加模型、数据集和训练方法,提供预训练模型和高级训练技术,并配备可视化工具。
pytorch-doc-zh - PyTorch深度学习库中文文档与教程,支持GPU和CPU优化
PyTorch深度学习GPUtensor库中文文档Github开源项目
提供最新的PyTorch中文文档与教程,涵盖深度学习和张量优化,支持GPU和CPU。包括2.0版本中文翻译、最新英文教程和文档,以及丰富的学习资源和社区支持,适合希望深入了解和使用PyTorch的中文用户。
tch-rs - Rust语言的PyTorch C++ API接口
tch-rslibtorchPyTorchRustnn::ModuleGithub开源项目
tch-rs是Rust语言对PyTorch C++ API的绑定,通过简洁的封装实现高效的深度学习模型训练和推理。支持系统全局libtorch安装、手动安装和Python PyTorch安装,兼容CUDA并支持静态链接。提供详细的安装说明和丰富的示例代码,包括基础张量操作、梯度下降训练、神经网络构建和迁移学习等,适合不同水平的开发者。
mmocr - 一个基于 PyTorch 和 mmdetection 的用于文本检测、文本识别以及相应的下游任务,包括关键信息提取的开源工具箱
OpenMMLabMMOCRPyTorch文本检测文本识别Github开源项目
MMOCR是一个基于PyTorch和mmdetection的开源工具箱,提供全面的文本检测、文本识别及信息提取解决方案。它支持多种先进模型和模块化设计,允许用户自定义优化器、数据预处理和模型组件。最新版本v1.0.0新增支持SCUT-CTW1500、SynthText和MJSynth数据集,更新了FAQ和文档,并添加了新教程笔记本。适用于PyTorch 1.6+,欢迎研究人员和开发者贡献改进。
darts - 使用DARTS算法高效设计图像分类和语言建模架构
DARTSPyTorch卷积架构语言建模图像分类Github开源项目
DARTS算法通过连续松弛和梯度下降,在架构空间中高效设计用于图像分类(CIFAR-10和ImageNet)和语言建模(Penn Treebank和WikiText-2)的高性能卷积和循环架构。只需一块GPU即可运行,提供预训练模型及详细的架构搜索和评估指南,支持自定义架构的可视化。
CycleGAN - 可以从绘画生成照片、将马变成斑马、进行风格转换等的软件。
CycleGAN图像转换PyTorch对抗网络预训练模型Github开源项目热门
CycleGAN 利用循环一致性对抗网络,实现了无需成对输入输出数据的图像到图像的转换。这一技术广泛应用于风格转换、季节变换及更多复杂场景,支持PyTorch实现,并提供丰富的预训练模型。无论是艺术画作到现实照片的转换,还是不同季节间的景观变化,CycleGAN 都能提供令人印象深刻的视觉效果。
pytorch-CycleGAN-and-pix2pix - PyTorch中的高效CycleGAN和pix2pix图像翻译
CycleGANpix2pixPyTorch图像翻译神经网络Github开源项目
该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。
相关文章
RelBench:斯坦福大学最新发布,将关系型数据库转为图形表示,提高预测准确性
2024年08月03日
CycleGAN: 无配对图像到图像转换的革命性技术
3 个月前
MockingBird: 5秒内克隆声音并生成任意语音内容的AI技术
3 个月前
PyTorch-Grad-CAM:计算机视觉的高级AI可解释性工具
3 个月前
RobustVideoMatting: 突破性的实时高分辨率视频抠图技术
3 个月前
DeepPavlov: 开源对话系统和聊天机器人的深度学习框架
3 个月前
Thinc:一个创新的深度学习库,为您的机器学习项目带来全新体验
3 个月前
DeepPavlov: 开源对话系统和聊天机器人的深度学习框架
3 个月前
Pyannote:揭秘声音的DNA,精准分辨出各个发言者的声音
2024年08月03日