#Recurrent Memory Transformer
Recurrent Memory Transformer: 突破长上下文处理的创新架构
3 个月前
相关项目
recurrent-memory-transformer
Recurrent Memory Transformer (RMT)是为Hugging Face模型设计的记忆增强型循环Transformer。通过在输入序列中添加特殊记忆标记,RMT实现了高效的记忆机制,能够处理长达1M及以上的token序列。项目提供RMT实现代码、训练示例和评估工具,在BABILong等长文本基准测试中表现优异,为研究长序列处理提供了有力支持。
recurrent-memory-transformer-pytorch
Recurrent Memory Transformer的PyTorch实现项目致力于解决超长序列处理问题。该模型通过创新的记忆机制和高效注意力机制,可处理长达百万token的序列。项目提供简便的安装使用方法,支持XL记忆和记忆回放反向传播等先进功能。这一实现在长序列处理、因果推理和强化学习等领域展现出优异性能,为AI研究和应用开发提供了实用工具。