SAMed
SAMed是一种基于Segment Anything Model的医学图像分割方法,通过低秩适应微调策略优化SAM模型。在Synapse多器官分割数据集上,SAMed达到81.88 DSC和20.64 HD的性能。由于仅更新部分参数,SAMed具有低部署和存储成本的优势。研究团队还推出了性能更高的SAMed_h版本,为医学影像分析提供了新的解决方案。