#SetFit
setfit - SetFit高效小样本学习框架,支持多语言文本分类
SetFit少量标签数据无需提示多语言支持Hugging Face HubGithub开源项目
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
amd-full-phonetree-v1 - 提高文本分类效率的少样本学习模型
Logistic回归对比学习句子变压器模型Github开源项目SetFit文本分类Huggingface
SetFit模型利用sentence-transformers/paraphrase-mpnet-base-v2进行句子嵌入,通过对比学习优化,实现少样本学习效率。结合LogisticRegression进行文本分类,可处理最长512词元的序列,支持两类分类,适用于需要精确文本分类的场景,可通过SetFit库轻松使用。
amd-partial-phonetree-v1 - 融合句子转换器和对比学习的高效文本分类模型
Github模型文本分类句子嵌入开源项目SetFit少样本学习Logistic回归Huggingface
SetFit模型结合sentence-transformers/paraphrase-mpnet-base-v2,通过高效的少样本学习实现文本分类。模型采用对比学习微调句子转换器和训练LogisticRegression分类头,具有优异的分类性能。支持最大512标记长度,适用于电话语音邮件和电话树分类需求。模型适合需要高效文本分类的研发人员和数据科学家使用。
INVOICE-DISPUTE - SetFit模型高效应用于文本分类的少样本学习方法
对比学习开源项目文本分类SetFitGithubHuggingface模型LogisticRegression句子变换器
本项目介绍了SetFit模型在文本分类任务中的应用,利用高效的少样本学习技术,通过对Sentence Transformer进行对比学习微调,并使用微调后的特征训练Logistic Regression分类头,实现文本分类。SetFit模型支持最大512个令牌的序列长度,适用于二分类任务。通过SetFit库,用户可以便捷地安装并使用该模型进行推理,更多信息可在GitHub和相关论文中查阅。
answer-classification-setfit-v2-binary - SetFit少样本学习文本分类模型,适用于多领域
文本分类少样本学习Github开源项目SetFit对比学习Huggingface句子转换器模型
项目运用了SetFit框架,实现在BAAI/bge-base-en-v1.5基础上的少样本学习文本分类,结合对比学习和Logistic Regression算法,提升了文本分类的精准度。模型适用于广泛领域,支持长至512个token的文本分类,易于通过SetFit库安装使用,设计理念基于“无提示高效少样本学习”,在小数据集上实现可靠分类表现,提供了一项潜力巨大的深度学习工具。
amd-power-dialer-v1 - 少样本高效文本分类模型概览
文本分类少样本学习Github开源项目SetFit对比学习Huggingface句子转换器模型
了解利用SetFit和Sentence Transformer进行少样本高效文本分类的方式,该模型微调Sentence Transformer并用其特征进行分类头训练。用户可通过简单安装与代码示例快捷进行推理,显著优化文本分类任务。
gbert-large-paraphrase-cosine - GBERT-Large模型优化德语少样本文本分类
BERTGithub开源项目句子相似度SetFit德语模型自然语言处理Huggingface模型
gbert-large-paraphrase-cosine是一个基于deepset/gbert-large的德语句子转换模型,能将文本映射至1024维向量空间。该模型与SetFit配合使用,显著提升德语少样本文本分类效果。模型采用MultipleNegativesRankingLoss和余弦相似度作为损失函数,在精选的deutsche-telekom/ger-backtrans-paraphrase数据集上训练。评估显示,其在德语少样本场景中的表现优于多语言模型和Electra模型,为德语自然语言处理任务提供了有力工具。
botpress_Vaganet_new_model - 高效的少样本学习技术提升多语言文本分类精度
Github模型文本分类开源项目对比学习SetFitLogistic回归Huggingface句子转换器
SetFit模型结合sentence-transformers的微调与LogisticRegression,实现88.97%的文本分类准确率,支持在多语言环境下进行34类文本分类,具备少样本学习能力,是资源有限条件下的高效选择。
ACCOUNT-OWNERSHIP - 结合对比学习和Logistic回归的高效文本分类模型
开源项目文本分类SetFitGithubHuggingface模型LogisticRegression句子转换器高效少样本学习
SetFit模型通过对比学习和Logistic回归,实现精准的文本分类,该模型微调Sentence Transformer以获取特征。无需复杂提示和大规模数据,适用于多样文本分类任务,并可在自有数据集上方便微调。
amd-partial-v1 - SetFit文本分类模型的高效少样本学习
对比学习开源项目文本分类SetFitGithubHuggingface模型句子转换器高效少样本学习
SetFit结合sentence-transformers/paraphrase-mpnet-base-v2,实现高效的文本分类,使用对比学习和LogisticRegression,总体准确率达96.7%。该模型经过优化学习率和损失函数,适用于多种文本分析场景。