Project Icon

amd-power-dialer-v1

少样本高效文本分类模型概览

了解利用SetFit和Sentence Transformer进行少样本高效文本分类的方式,该模型微调Sentence Transformer并用其特征进行分类头训练。用户可通过简单安装与代码示例快捷进行推理,显著优化文本分类任务。

amd-power-dialer-v1项目介绍

项目概述

amd-power-dialer-v1是一个专门用于文本分类的模型,被归类为SetFit模型。该模型采用了一种高效的少样本学习技术,通过以下步骤进行训练:

  1. 使用对比学习对句子变换器(Sentence Transformer)进行微调。
  2. 使用从微调后的句子变换器中提取的特征来训练分类头。

该技术的优点在于,能够在有限的样本条件下,最大化地提高模型的文本分类能力,极大地降低了对大规模训练数据的依赖。

使用方法

要使用amd-power-dialer-v1模型进行推理,用户首先需要安装SetFit库。这可以通过以下命令完成:

python -m pip install setfit

安装完成后,就可以按照如下步骤进行推理:

from setfit import SetFitModel

# 从Hub下载模型并进行推理
model = SetFitModel.from_pretrained("nikcheerla/amd-power-dialer-v1")
# 执行推理并获得预测结果
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])

通过上述代码示例,用户可以轻松地获取文本的分类结果,例如,判断一段评论是正面的还是负面的。

引用信息

对于希望引用该模型的用户,可以参考以下BibTeX条目:

@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}

该引用文献详细介绍了模型背景及其在少样本学习中的应用,为进一步的学术研究和实践提供了有力的支持。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号