#spaCy
spaCy
spaCy 是一个高级自然语言处理库,支持Python和Cython,适用于实际产品开发。它提供预训练管道,支持70种以上语言的分词和训练,拥有最先进的速度和神经网络模型,可用于词性标注、句法解析、命名实体识别、文本分类等多种任务。spaCy 同时支持多任务学习和使用预训练变换器,如BERT,适合生产环境下的训练系统,模型打包,部署和工作流管理,是商业开源软件,遵循MIT许可证。
spacy-llm
该模块将大型语言模型(LLMs)集成到spaCy中,实现了快速原型设计和提示生成,无需训练数据即可输出可靠的NLP结果。支持OpenAI、Cohere、Anthropic、Google PaLM、Microsoft Azure AI等API,并兼容Hugging Face上的开源LLMs,如Falcon、Dolly、Llama 2等。还支持LangChain,提供命名实体识别、文本分类、情感分析等多种现成任务。用户可通过spaCy的注册表轻松实现自定义功能。该模块结合LLM的强大功能与spaCy的成熟基础,提供灵活高效的NLP解决方案。
spacy-transformers
spacy-transformers通过Hugging Face的transformers实现预训练模型如BERT、XLNet和GPT-2的集成,提升spaCy的功能。支持多任务学习、转换器输出自动对齐等,兼容Python 3.6以上版本,需要PyTorch v1.5+和spaCy v3.0+。
spacy-stanza
spacy-stanza 是一个包装 Stanza 库的软件,使得在 SpaCy 管道中使用斯坦福模型变得更加容易。其功能包括多语言词性标注、形态分析、词干提取和依存解析,支持68种语言,还为部分语言提供命名实体识别功能。用户可以通过下载预训练的 Stanza 模型,通过 spacy_stanza.load_pipeline() 加载并处理文本。这个工具还允许添加自定义组件,结合 SpaCy 的词汇属性、规则匹配和可视化功能,提供了强大的自然语言处理解决方案。
prodigy-openai-recipes
该项目展示了如何结合OpenAI大语言模型与本地Prodigy实例,通过零次和少次学习技术,高效构建高质量数据集。用户可以使用该方法进行命名实体识别和文本分类等任务,手动校正模型预测结果以提高数据准确性。项目提供详细的设置指南,帮助用户在本地安装和运行必要的软件,并配置API密钥。通过高效的数据注解流程和灵活的模板设置,用户能够快速获得金标准数据,并训练符合特定需求的监督模型。
scispacy
scispaCy项目提供了适用于科学文献处理的定制化spaCy管道和模型,包括基于生物医学数据训练的分词器、词性标注器和实体识别模型。用户可轻松安装和使用这些工具,项目支持多种NER模型和实体链接器,适合不同任务使用,并提供详细的安装和使用指南。
spacy-models
此页面详细介绍了spaCy模型的下载、安装和使用方法。内容涵盖模型命名规范、版本管理以及旧版本支持。提供用于文本处理的多种模型,包括标签、解析、命名实体识别和句子分割。本页面还确保模型具备快速部署与透明管理的特性。
pytextrank
PyTextRank 是一个Python实现的TextRank算法库,作为spaCy管道扩展,专注于图形化自然语言处理和知识图谱应用。它支持短语提取、低成本抽取式摘要,方便将非结构化文本转化为结构化信息。
projects
Weasel项目模板提供了管理和分享各类端到端工作流程的便捷方式,可克隆预定义模板,调整以满足具体需求,进行数据加载和管道训练,导出为Python包并上传到远程存储,与团队共享结果。该项目还包括与第三方库和工具的集成模板,以及性能基准模板。