#transformers
LongLM学习资料汇总 - 一种无需微调即可扩展LLM上下文窗口的新方法
Attention Sinks 入门指南 - 实现无限长度文本生成的高效流式语言模型
nlp-recipes入门指南 - 微软开源的自然语言处理最佳实践与示例
Chat Templates: 为大型语言模型打造对话模板的开源项目
LongLM: 无需微调即可自我扩展LLM上下文窗口
Attention Sinks: 让大语言模型无限流畅生成文本的新技术
NLP-recipes: 微软的自然语言处理最佳实践与示例
nlp-recipes
该资源库提供构建NLP系统的示例和最佳实践,重点关注最新的深度学习方法和常见场景,如文本分类、命名实体识别和文本摘要。支持多语言,特别是利用预训练模型应对不同语言任务。内容基于与客户的合作经验,旨在简化开发过程,帮助数据科学家和工程师快速部署AI解决方案。
spacy-transformers
spacy-transformers通过Hugging Face的transformers实现预训练模型如BERT、XLNet和GPT-2的集成,提升spaCy的功能。支持多任务学习、转换器输出自动对齐等,兼容Python 3.6以上版本,需要PyTorch v1.5+和spaCy v3.0+。
attention_sinks
通过`attention_sinks`改进预训练语言模型,结合滑动窗口注意力,实现流畅文字生成。与传统`transformers`不同,保持显存恒定使用,确保高效性能。支持Llama、Mistral、Falcon、MPT、GPTNeoX等多种模型,适用于多步生成任务,如聊天机器人。详细benchmark测试结果显示,该技术在处理数百万个令牌后依然保持低困惑度和高流畅度,是多任务处理的理想选择。
LongLM
LongLM项目介绍了Self-Extend方法,通过不需要调优的方式扩展大语言模型(LLM)的上下文窗口,利用其内在能力处理长上下文。此方法获得了Google I/O和ICML 2024的关注,并支持多种模型如Llama-3、Gemma和Qwen1.5。项目说明了如何安装和运行Self-Extend,并提供组选参数的指导原则及实验结果,以帮助用户应用这一技术。
transformers
该课程由软件工程师Peter发起,现正免费且开放源码。内容涵盖transformers的关键概念、实践练习和学术论文剖析。通过YouTube视频讲解和Jupyter笔记本实操,深入学习编码器-解码器架构、自注意力、多头注意力等核心概念,并从零开始构建简单的transformer模型。亦包含如何微调BERT和GPT-2等预训练模型及进行特定任务处理和文本生成。
awesome-huggingface
该项目列出了多个优秀的开源项目和应用,均与Hugging Face库集成,为各类NLP任务提供有效的解决方案。内容涵盖官方库教程、NLP工具包、文本表示、推理引擎、模型扩展、模型压缩、对抗攻击、风格转换、情感分析、语法纠正、翻译、知识与实体、语音处理、多模态学习、强化学习、问答系统、推荐系统、评估工具、神经搜索、云支持和硬件支持等多个领域。此项目能够帮助用户找到并使用适合的工具和库,提升自然语言处理任务的效率和效果。
OpenDelta
OpenDelta是一个高效的开源调优工具包,通过添加少量参数进行调整,可实现如前缀调优、适配器调优、Lora调优等多种方法。最新版本支持Python 3.8.13、PyTorch 1.12.1和transformers 4.22.2。
transformers-interpret
Transformers-interpret是一款为Transformer模型设计的解释工具,只需简单代码即可实现。支持文本和计算机视觉模型,并可在笔记本中展示或保存为PNG和HTML文件。通过导入预训练模型和tokenizer,用户能快速获得预测分类解释,并提供可视化功能。此项目基于Captum库构建,支持多标签分类等功能,帮助开发者深入理解模型决策。
BLOOM
作为致力于通过开源和开放科学推进AI发展的平台,BLOOM提供包括BloomModel在内的多款AI模型,充实的文档与代码资源助力研究人员与开发者更好地探索与应用前沿AI技术。