#语音情感识别

emotion2vec: 突破性的语音情感识别预训练模型

3 个月前
Cover of emotion2vec: 突破性的语音情感识别预训练模型
相关项目
Project Cover

emotion2vec

emotion2vec是一个开源的语音情感表示模型,采用自监督预训练方法提取跨任务、跨语言和跨场景的通用情感特征。该模型在IEMOCAP等数据集上取得了领先性能,并在多语言和多任务上展现出优异表现。项目开源了预训练模型、特征提取工具和下游任务训练脚本,为语音情感分析研究提供了有力支持。

Project Cover

speech-emotion-recognition

speech-emotion-recognition是一个开源的语音情感识别系统,基于Emo-db数据集开发。该项目支持SVM、随机森林、神经网络、CNN和LSTM等多种机器学习和深度学习模型。系统使用Python实现,提供完整的数据预处理、特征提取和模型训练工作流程。项目设计简单易用,适合研究人员和开发者进行语音情感分析的研究和应用开发。该系统可应用于客户服务、情感计算、人机交互等领域,具有模型多样化、使用灵活、易于扩展等优点。

Project Cover

SER-Odyssey-Baseline-WavLM-Multi-Attributes

此模型是Odyssey 2024语音情感识别竞赛的基线系统,基于WavLM架构开发。它能够同时预测语音的唤醒度、支配度和效价三个维度,输出值范围在0到1之间。模型使用MSP-Podcast数据集训练,并在竞赛的Test3和Development数据集上完成了基准测试。该模型提供了简洁的使用接口,便于集成到各类语音情感分析应用中。

Project Cover

hubert-large-speech-emotion-recognition-russian-dusha-finetuned

该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。

Project Cover

wav2vec2-large-robust-12-ft-emotion-msp-dim

该模型基于Wav2vec 2.0技术,通过在MSP-Podcast数据集上微调Wav2Vec2-Large-Robust模型实现。它能够处理原始音频信号,识别语音中的唤醒度、支配度和效价三个维度,输出0-1范围内的情感预测结果。此外,模型还提供最后一个transformer层的池化状态,为语音情感分析研究提供了有力支持。

Project Cover

wav2vec2-xlsr-persian-speech-emotion-recognition

该项目开发的Wav2Vec 2.0波斯语语音情感识别模型能够识别六种基本情绪。模型在ShEMO数据集上训练,总体准确率达90%。项目提供了完整的使用说明,包括环境配置、模型加载和预测示例代码。同时还展示了模型在各情绪类别上的性能指标,如精确率、召回率和F1分数等。

Project Cover

wav2vec-english-speech-emotion-recognition

此项目展示了Wav2Vec 2.0模型在英语语音情感识别任务中的应用。通过使用SAVEE、RAVDESS和TESS数据集进行微调,模型能够识别7种基本情绪。在评估集上,模型达到了97.463%的准确率。这一成果为语音情感分析领域提供了新的可能性,可应用于语音交互系统和情感计算研究。

Project Cover

wav2vec2-lg-xlsr-en-speech-emotion-recognition

项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。

Project Cover

wav2vec2-xls-r-300m-emotion-ru

该模型是基于wav2vec2-xls-r-300m微调的俄语语音情感识别(SER)模型。利用DUSHA数据集进行训练,包含12.5万条俄语音频样本,可识别虚拟助手对话中的积极、悲伤、愤怒和中性四种基本情绪。模型在测试集上达到90.1%的准确率,为俄语语音情感分析提供了高精度解决方案。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号