SPIN
SPIN项目通过使用自对弈机制提升语言模型性能,无需额外的人类注释数据。模型通过生成自旋数据并与其先前版本对弈来优化策略。多项基准测试结果表明,SPIN显著提升模型表现,超过直接偏好优化方法。开源的完整代码和训练脚本提供了从数据生成到模型微调的全套流程。
self-rewarding-lm-pytorch
self-rewarding-lm-pytorch是一个开源项目,实现了MetaAI提出的自我奖励语言模型训练框架。该项目包含SPIN算法实现,提供灵活的微调配置选项,支持自定义奖励提示、任意顺序的微调策略和批量采样。这个工具能帮助研究人员探索和改进语言模型的自我学习能力。