#表格问答

tapas-large-finetuned-wtq - TAPAS大型表格问答模型实现精准查询和复杂推理
Github开源项目深度学习自然语言处理模型HuggingfaceWikiTable Questions表格问答TAPAS
TAPAS-large-finetuned-wtq是一个基于TAPAS架构的大型表格问答模型。该模型在WikiTable Questions数据集上微调,采用相对位置编码,支持复杂表格查询和推理。经过MLM和中间预训练,模型在SQA、WikiSQL和WTQ数据集上进行链式微调,在WTQ开发集达到50.97%的准确率。模型能够高效处理与表格相关的复杂问题,提供准确的表格信息提取功能。
tapas-base-finetuned-wtq - TAPAS基础模型在WikiTable Questions数据集上的微调版本
Github开源项目预训练模型自然语言处理微调模型Huggingface表格问答TAPAS
该项目是TAPAS基础模型在WikiTable Questions (WTQ)数据集上的微调版本。模型采用相对位置嵌入,经过掩码语言建模和中间预训练后,通过SQA、WikiSQL和WTQ数据集进行链式微调。在WTQ开发集上,模型达到46.38%的准确率。项目提供两个版本:默认的相对位置嵌入版本和可选的绝对位置嵌入版本,可用于表格相关的问答任务。
tapas-tiny-finetuned-wtq - TAPAS模型为WikiTable问题提供精准问答解决方案
Github开源项目微调预训练Hugging Face模型Huggingface表格问答TAPAS
TAPAS模型经过在WikiTable Questions数据集上的精细调优,提供多种版本以满足不同需求。利用相对和绝对位置嵌入选择,在表格问答任务中表现优异。模型通过掩码语言模型和中间预训练增强数值推理能力,并通过添加单元选择头和聚合头微调SQA、WikiSQL和WTQ数据集以提升问答性能。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号