#Unsloth

zephyr-sft-bnb-4bit - 通过Unsloth技术快速优化Mistral等模型的内存使用
性能优化开源项目Unsloth模型Huggingface节省内存微调MistralGithub
该项目使用Unsloth技术实现了Mistral、Gemma和Llama等模型的快速微调,显著降低内存使用率。用户可以通过简单的操作获得优化后的模型,支持导出为GGUF、vLLM或上传至Hugging Face。此方法特别适用于内存要求高的模型,并免费提供初学者友好的工具。
gemma-2b-bnb-4bit - 提高模型微调速度和内存效率,支持多模型免费训练
Llama开源项目模型GithubHuggingfaceGemmaMistral模型微调Unsloth
该项目提供了一套适用于Unsloth的Google Colab免费笔记本,通过优化微调,提升Gemma、Mistral和Llama等模型的执行速度至2至5倍,且减少内存使用达70%。用户只需添加数据集并运行,即可快速获得微调模型,还可导出为多种格式或上传至Hugging Face。项目特点包括对初学者的友好性和对多模型的支持,成为高效深度学习的重要工具。
llama_3.1_q4 - 高效文本生成模型,结合优化技术提升性能
模型训练HuggingfaceGithub开源项目模型Unslothtransformers文本生成
llama_3.1_q4模型结合Unsloth与Huggingface TRL库,实现快速训练,保持8B参数模型的强大性能,优化文本生成能力。项目在Apache-2.0许可下开放使用,适用于多语言生成,由keetrap负责开发。
Qwen2.5-0.5B-Instruct-bnb-4bit - 提升多语言长文本生成与指令跟随能力,改善结构化数据处理
优化训练Github模型开源项目多语言支持Huggingface大语言模型Qwen2.5Unsloth
Qwen2.5语言模型系列在知识、编码和数学上取得进步,支持29种语言和128K词的长文本生成。其指令跟随和结构化数据处理经过优化,提升生成JSON等输出的效率。适用于多语言和复杂任务的场景,如代码生成和数据管理,通过改进训练架构提升性能和内存效率。
Mistral-Small-Instruct-2409-bnb-4bit - 优化模型效率,降低内存消耗,实现免费微调
开源项目模型Github性能提升HuggingfaceMistral模型微调记忆节省Unsloth
Mistral-Small-Instruct-2409利用Unsloth技术实现了快速微调,与传统方法相比,显著降低约70%的内存使用,提高2到5倍的效率。该项目提供易于上手的Google Colab免费笔记本,支持多种导出格式包括GGUF和vLLM,同时提供详尽的安装和使用指南。Mistral-Small-Instruct-2409还支持函数调用和简易命令行交互,适合需高效生产推理的用户。
Phi-3.5-mini-instruct - Unsloth加速技术让开源语言模型训练更高效
微调长上下文开源项目模型GithubHuggingfacePhi-3.5多语言Unsloth
Phi-3.5-mini-instruct是微软AI团队开发的开源语言模型,具备多语言理解、长文本处理和代码生成能力,支持128K上下文长度。结合Unsloth优化技术,模型训练速度提升2倍,内存占用降低50%。适合在资源受限环境下部署的AI应用开发,并提供Google Colab环境供快速测试验证。
Mistral-Nemo-Instruct-2407 - 快速高效的模型微调工具,降低内存消耗
性能优化开源项目Unsloth模型HuggingfaceGoogle Colab微调MistralGithub
利用Unsloth技术,在简化操作的同时,在Google Colab环境下实现模型微调,速度提升至5倍,内存使用降低70%。界面设计便于数据集上传和模型优化,并支持导出为GGUF、vLLM格式或上传至Hugging Face。兼容多种模型如Llama、Gemma、Mistral等,即便大型模型也可显著加快微调过程。
llama-3.1-openhermes-tr - 高效训练和优化的Llama模型应用
模型训练llama开源项目模型GithubHuggingfacetransformersUnsloth
这个开源项目演示了如何利用Unsloth框架和Huggingface的TRL库,加速Llama模型的训练过程。该模型专为文本生成和问答优化,具备高效的执行能力。尤其适用于需快速处理大规模文本数据的场景,如自然语言处理和人工智能开发。通过Python,用户可以简单地加载并使用模型,以实现高效的内容生成。该项目为技术指导和内容创作提供了高效、高质量的解决方案。
llama-2-7b-chat-bnb-4bit - 开源LLM模型训练加速工具实现2至5倍速提升并节省70%内存
开源项目Llama-2模型GithubUnsloth人工智能大语言模型模型微调Huggingface
该开源项目致力于优化大语言模型的训练过程,通过创新技术为Mistral、Gemma、Llama 2等主流模型提供训练加速解决方案。基于Colab平台的多个训练笔记本支持对话及文本补全功能,可实现2-5倍的训练速度提升,并将内存占用降低70%。项目支持GGUF格式导出及vLLM、Hugging Face平台部署,为计算资源受限的AI开发团队提供了高效的模型训练方案。
gemma-2-9b-it-bnb-4bit - 基于Unsloth框架的语言模型量化微调方案
模型微调GemmaGithubHuggingface深度学习开源项目模型Unsloth大语言模型
基于Gemma 2 9B模型开发的4bit量化项目,通过Unsloth框架优化实现显存占用降低70%、训练速度提升2-5倍的性能表现。项目集成Colab环境,支持模型训练、GGUF格式导出及Hugging Face部署,为大语言模型的量化训练提供完整解决方案。
gemma-2-2b-bnb-4bit - Gemma模型4bit量化实现提速降耗的AI推理优化
UnslothGemmaGithub模型微调模型Llama机器学习开源项目Huggingface
该项目对Gemma-2-2b模型进行4bit量化优化,通过bitsandbytes技术实现高效压缩。在Google Colab环境下可实现2倍以上推理速度提升,同时节省60%以上内存占用。项目提供完整的模型微调支持,可帮助开发者在有限算力条件下高效部署语言模型。
codegemma-2b - 深度学习模型微调的新方案:提升效率与内存节约
Github开源项目内存优化UnslothGemmaHuggingfacefinetuneLlama-2模型
CodeGemma-2b项目使用Unsloth技术,加速多个深度学习模型的微调,包括Mistral、Gemma、Llama等。速度提升最高达5倍,内存使用减少70%。通过Google Colab和Kaggle的免费notebook,用户可以轻松展开微调工作。简化的界面设计支持从数据添加到模型导出的完整流程,适合初学者快速上手。这种创新优化方法节省计算资源,提高模型性能,是开发者提升生产力的有力助手。
Qwen2.5-7B-bnb-4bit - 采用4bit量化技术加速Qwen2.5-7B模型并降低70%内存占用
大语言模型Qwen2.5开源项目Unsloth模型模型微调Huggingface深度学习Github
基于Qwen2.5-7B的量化优化版本,通过4bit量化技术将内存占用降低70%。模型拥有76亿参数,具备128K上下文长度和29种语言处理能力,支持编码、数学运算和长文本生成等功能。该版本在保持原有性能的同时实现轻量化部署,可用于后续的模型微调与定制开发。
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF - 高效微调的3B参数英文指令型大语言模型
深度学习Github开源项目HuggingfaceUnsloth模型训练AI开发Llama模型
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF是基于Llama-3.2-3B-Instruct-uncensored模型微调的开源大语言模型。该模型使用Unsloth和Huggingface的TRL库训练,提高了2倍的训练速度。由PurpleAILAB开发,采用Apache 2.0许可证,主要用于英语文本生成任务。这是一个参数量为3B的指令型模型,适合需要快速部署的应用场景。
Phi-3-mini-4k-instruct-bnb-4bit - 通过Unsloth工具提升深度学习模型微调速度与内存效率
Github开源项目Unsloth模型模型微调HuggingfacetransformersGoogle Colab机器学习
项目通过提供免费、易于使用的Google Colab笔记本,便于在微调Phi-3.5、Llama 3.1、Mistral等深度学习模型时实现更高效的速度与内存管理,内存使用减少达74%。用户只需添加数据集并执行所有代码,便可获得加速至最高3.9倍的微调模型,支持导出多种格式或上传至Hugging Face平台。Colab快捷方式有效简化模型微调过程,适用于文本生成和对话模板。
Llama-3.2-1B - 提升2.4倍速度的语言模型微调框架
Github开源项目Unsloth模型模型微调Huggingface内存优化多语言支持Llama 3.2
Meta发布的Llama-3.2-1B是一款支持8种语言的大规模语言模型。通过集成Unsloth工具,该项目实现了模型微调速度提升2.4倍、内存占用降低58%的性能优化。项目提供Google Colab环境支持,可快速进行模型训练,并支持将成果导出为GGUF、vLLM格式或部署至Hugging Face平台。
Mistral-Nemo-Instruct-2407-bnb-4bit - 高效LLM微调框架提速2-5倍并减少70%内存使用
微调开源项目模型GithubHuggingface大语言模型加速训练Unsloth节省内存
该项目为Mistral、Gemma、Llama等大语言模型提供高效微调框架。利用Unsloth技术,训练速度提升2-5倍,内存使用减少70%。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b、Mistral 7b等模型训练。框架操作简单,适合初学者使用,支持将微调模型导出为GGUF、vLLM格式或上传至Hugging Face平台。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
模型量化HuggingfaceLlama内存优化开源项目模型Github参数调优Unsloth
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
SQL_Llama-3.2-3B-Instruct-uncensored_final-gguf - Llama模型驱动的高效SQL指令生成工具
Github模型模型训练开源项目Huggingface文本生成人工智能LlamaUnsloth
SQL_Llama-3.2-3B-Instruct-uncensored_final-gguf是PurpleAILAB基于Llama 3.2-3B模型开发的SQL指令生成工具。该项目利用Unsloth和Huggingface的TRL库进行优化,显著提升了训练效率。这一模型专门针对SQL相关任务进行了微调,旨在为开发者提供准确、高效的SQL指令生成和处理功能。
mistral-7b-instruct-v0.3 - 高效finetune解决方案,减少内存占用提升速度
神经网络MistralHuggingface性能提升开源项目模型GithubUnsloth调优
这款通过Unsloth技术的Google Colab笔记本集合,简化了Mistral、Gemma和Llama等AI模型的finetune过程。简单操作即可提高模型速度超过两倍,并显著降低内存占用,同时允许将优化的模型导出为GGUF、vLLM,或上传至Hugging Face,适合初学者使用。
Asifmodel - 基于Unsloth和TRL库加速训练的LLaMA模型
模型训练Llama开源项目人工智能模型GithubHuggingface开源模型Unsloth
Asifmodel是一个基于unsloth/meta-llama-3.1-8b-bnb-4bit微调的LLaMA模型。通过结合Unsloth框架和Hugging Face的TRL库,该模型实现了训练速度翻倍。采用Apache 2.0许可证,Asifmodel支持英语文本生成推理,为开发者提供了高效的模型训练方案。
model - 高效文本生成的突破:快速模型训练与推理
模型训练开源项目模型GithubHuggingfaceUnslothLLAMA文本生成推理Apache许可证
该模型使用Unsloth和Huggingface的TRL库显著加速了训练过程,实现了高效文本生成。由keivenlombo开发,基于Apache-2.0许可,此模型为大规模语言模型的实施提供了一种便捷且准确的解决方案。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
Huggingface内存优化模型微调开源项目模型GithubUnsloth学习笔记本Google Colab
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
Qwen2-0.5B - 使用Unsloth提升微调效率和内存优化
内存优化Qwen2LlamaHuggingfaceGithub开源项目模型Unsloth快速微调
Unsloth提供的工具支持在Google Colab上微调多种模型,如Llama、Gemma、Mistral等,速度提升可达5倍,内存使用减少至74%。简便的操作流程允许用户快速上传数据集并运行所有步骤,生成优化后的模型,支持导出和上传至各大平台,显著提高微调效率,是开发和测试AI模型的可靠工具。
Mistral-Nemo-Base-2407-bnb-4bit - 提高模型微调速度并优化内存占用
效率MistralHuggingfaceGithub开源项目模型微调UnslothGoogle Colab
本项目使用Unsloth技术对Llama 3.1、Gemma 2和Mistral等模型提高微调速度,减少内存使用高达70%。通过免费的Google Colab笔记本,用户能够轻松完成微调过程,非常适合初学者使用。支持的模型包括Llama-3 8b、Gemma 7b、Mistral 7b等,这些模型在性能和内存使用上均有显著提升。
Qwen2.5-14B-Instruct-bnb-4bit - 高效微调多语言模型,优化长文本生成
模型微调HuggingfaceGithub开源项目模型Qwen2.5Unsloth多语言支持长文本支持
Qwen2.5模型利用Unsloth方法优化指令微调过程,节省70%的内存,支持多种模型如Llama 3.1和Gemma 2。同时,提供易用的Google Colab工具,支持多语言和长文本处理,适用于生成长达8000字符的内容,并集成到Transformers库中,便于部署应用。
Qwen2-1.5B-ITA-Instruct - Qwen2-1.5B-ITA-Instruct模型通过强化意大利语的加速训练
apache-2.0Unsloth模型Github开源项目意大利语模型微调Huggingface
Qwen2-1.5B-ITA-Instruct 通过 Unsloth 连续预训练模式提升意大利语表现,初步微调使用 gsarti/clean_mc4_it 数据集,随后借助 FreedomIntelligence/alpaca-gpt4-italian 数据集进行指示性微调,实现训练效率翻倍,综合性能在意大利语模型排行榜上有出色表现。
Meta-Llama-3.1-70B-Instruct-bnb-4bit - 量化调优技术显著提升性能,减少资源消耗
Llama 3.1Github模型开源项目免费教程性能优化Huggingface模型微调Unsloth
Unsloth工具实现对Llama 3.1等模型的量化,显著减少内存使用,提升运行速度至原来的2-5倍。提供适合初学者的Google Colab免费笔记本,简单加载数据集即可运行得到优化模型,可导出为GGUF、vLLM等格式或上传至Hugging Face。支持多种模型,如Llama-2、Gemma、Mistral,满足高效调优需求。
text2cypher-demo-6bit-gguf - 采用Unsloth加速的llama文本生成模型
Tomasonjotext-generation-inferencellamaHuggingfaceGithub开源项目模型Unslothtransformers
通过Unsloth与Huggingface的TRL库优化,模型训练速度提升两倍,支持快速文本生成和推理,基于Apache-2.0许可,灵活性与持续开发兼备。
mistral-7b-instruct-v0.2-bnb-4bit - 使用Unsloth技术优化模型微调,显著提升性能并减少内存占用
Mistral性能优化机器学习HuggingfaceGithub开源项目模型Unsloth数据集
该项目介绍了一种运用Unsloth技术的模型微调方法,使Mistral、Gemma、Llama等模型实现2-5倍的速度提升,并减少70%的内存使用。用户可通过在Google Colab或Kaggle运行免费笔记本,轻松获得经过优化的模型。工具初学者友好,支持多种微调和导出格式,如GGUF、vLLM,及上传至Hugging Face,满足不同用户的需求。
mistral-7b-bnb-4bit - 更高效的模型微调与内存优化技术
快速微调Github开源项目量化模型Mistral 7b内存优化UnslothHuggingface模型
Unsloth技术助力Mistral 7b在内存减少70%的同时实现5倍微调速度提升。项目提供多个适合初学者的Google Colab笔记,只需添加数据集并运行,便可生成更快的微调模型,支持导出到GGUF、vLLM或上传Hugging Face。此方案有效优化了Gemma 7b、Mistral 7b、Llama-2 7b等模型的性能和内存使用,提升模型微调效率。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号