Project Icon

Vision-Centric-BEV-Perception

视觉驱动的鸟瞰视角感知技术与应用综述

本文全面探讨了视觉驱动的鸟瞰视角(BEV)感知技术的应用和最新进展。文章覆盖了多个数据集、几何转换以及网络架构,展示了在逆向透视投影、深度转换和网络基础的PV2BEV转换领域的研究成果。还总结了从MLP到Transformer等现代架构在3D检测和语义分割任务上的表现,并提供了详细的时间线和基准测试结果,帮助读者理解和利用这些技术在自动驾驶等相关领域。

Cam2BEV - 深度学习实现多视角车载图像到语义分割鸟瞰图转换
Cam2BEVGithub开源项目深度学习自动驾驶语义分割鸟瞰图
该项目提出一种深度学习方法,将多个车载摄像头图像转换为语义分割鸟瞰图(BEV)。采用合成数据集训练,可良好泛化到真实场景。方法使用语义分割图像作为输入,缩小了仿真与真实数据的差距,无需手动标注。项目开源了代码、网络架构和数据集,适用于自动驾驶环境感知研究。相比传统逆透视映射,该方法在处理3D物体和遮挡区域时表现更佳。
BEVFormer - 多摄像头鸟瞰图学习框架助力自动驾驶感知
BEVFormerGithub多相机感知开源项目目标检测自动驾驶鸟瞰图表示
BEVFormer是一个用于自动驾驶感知的开源框架,通过时空Transformer从多摄像头图像中学习统一的鸟瞰图表示。该方法利用预定义的网格查询,结合空间交叉注意力和时间自注意力机制,有效聚合多视角的空间和时序信息。在nuScenes测试集上,BEVFormer达到56.9%的NDS指标,显著超越现有方法,与激光雷达系统性能相当。这一创新为基于纯视觉的3D目标检测提供了新的基准。
Fast-BEV - 新一代鸟瞰视角感知系统
Fast-BEVGithub开源项目深度学习自动驾驶计算机视觉鸟瞰图感知
Fast-BEV是一种先进的鸟瞰视角感知系统,专注于3D目标检测和BEV语义分割。该项目针对自动驾驶等应用场景进行了优化,提供多种模型配置和CUDA、TensorRT加速支持。Fast-BEV不仅在性能和速度方面表现卓越,还提供了完整的安装指南、数据准备流程和训练方法,为研究人员和开发者提供了强大的工具。作为领先的感知算法和计算机视觉解决方案,Fast-BEV为鸟瞰视角感知任务设立了新的标准。
bevfusion - 具有统一鸟瞰图表示的多任务多传感器融合
3D目标检测BEVFusionGithub多传感器融合开源项目自主驾驶鸟瞰图表示
BEVFusion是一个有效的多任务多传感器融合框架,通过在共享的鸟瞰视角表示空间中统一多模态特征,解决了传统点级融合方法的局限性。其优化的视角转换和显著降迟特性使其在各种3D感知任务中表现出色。该框架在提升3D物体检测和BEV图分割性能的同时,大幅降低计算成本,树立了新行业标杆。
PETR - 多视角3D感知框架 目标检测与BEV分割的统一解决方案
3D目标检测GithubPETRv2nuScenes数据集位置嵌入多视图感知开源项目
PETR是一个多视角3D感知框架,通过位置嵌入变换将3D坐标信息编码到图像特征中。其升级版PETRv2引入时序建模,支持目标检测和BEV分割。该框架在nuScenes数据集上展现了出色性能,为3D感知研究提供了有力基线。此外,PETR还支持3D车道线检测,相关工作在CVPR 2023工作坊中获得第一名。
Learning-Deep-Learning - 自动驾驶与深度学习前沿技术论文笔记集锦
Github开源项目机器学习深度学习自动驾驶计算机视觉论文阅读
这个项目汇集了深度学习和机器学习领域的论文阅读笔记,重点关注自动驾驶技术。涵盖BEV感知、语义占用预测、可行驶空间检测和3D目标检测等热门研究方向。同时收录了多篇综述文章,全面呈现自动驾驶领域的最新进展和技术动向。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
Transformer-in-Computer-Vision - Transformer在计算机视觉中的最新研究汇总
GithubTransformer开源项目最新论文深度学习视觉算法计算机视觉
项目汇总了最新的基于Transformer的计算机视觉研究论文,涵盖了视频处理、图像分类、目标检测和异常检测等广泛应用场景。用户可点击链接查看具体类别的论文和代码。若发现遗漏研究,欢迎提交问题或请求。最新版本更新于2024年8月8日,为科研人员与开发者提供丰富资源。
VLN-BEVBert - 多模态地图预训练助力语言引导导航
BEVBertGithub交叉模态推理多模态地图预训练开源项目空间感知视觉语言导航
BEVBert项目为视觉语言导航(VLN)任务开发了新型地图预训练范式。通过结合局部度量地图和全局拓扑地图,该方法平衡了VLN的短期推理和长期规划需求。在R2R、R2R-CE、RxR和REVERIE四个VLN基准测试中,BEVBert展现出领先性能。项目开源了完整代码,并提供详细指南,便于研究人员复现实验和进行深入研究。
PersFormer_3DLane - PersFormer基于透视变换实现精确的3D车道线检测
3D车道线检测GithubOpenLane基准PersFormerPyTorch实现开源项目透视变换
PersFormer是一种创新的3D车道线检测模型,采用基于Transformer的模块生成BEV特征并参考相机参数。模型能同时进行2D和3D车道检测,提升特征一致性与多任务学习效果。PersFormer在OpenLane和Apollo 3D Lane Synthetic数据集上的表现优异,超越了多种现有方法,并提供简便的安装与评估说明以及详细的训练和测试指南,成为3D车道检测领域的重要进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号