Project Icon

rexmex

推荐系统评估指标和报告工具库

rexmex是一个用于推荐系统评估的Python库,提供了全面的评估指标集合,涵盖排名、评分、分类和覆盖率等方面。该库集成了经典指标和最新数据挖掘研究成果,并提供报告生成和性能可视化功能。rexmex操作简便,适用于多种推荐系统场景,可帮助研究人员和开发者全面评估系统性能。

OmniXAI - 多功能AI决策解释Python库
GithubOmniXAI可解释人工智能开源项目数据分析机器学习模型解释
OmniXAI是一个开源Python库,专注于可解释人工智能(XAI)。它支持多种数据类型和机器学习模型,提供丰富的解释方法,如特征归因和反事实解释。通过统一接口和可视化仪表板,OmniXAI简化了AI决策解释过程,适用于机器学习流程的各个阶段,为数据科学家和ML从业者提供深入洞察。
prom_ex - PromEx为Elixir应用提供全面监控能力
ElixirGithubGrafanaPromExPrometheus开源项目监控
PromEx是专为Elixir生态系统设计的监控工具,提供Prometheus指标和Grafana仪表板。它支持多种流行Elixir库,允许添加自定义指标,并能快速集成到Phoenix应用中。PromEx为Elixir项目提供全面的性能和健康状况监控,是一个强大的可观测性解决方案。
repokemon - 融合宝可梦名称的 GitHub 仓库展示平台
GitHubGithubRepokémon宝可梦开源项目数据抓取
Repokemon 是一个创新的开源项目,通过 GitHub API 搜索与宝可梦同名的仓库,并展示星标数最多的匹配结果。该项目不仅提供了一个独特的 GitHub 仓库展示平台,还包含了数据抓取、图像处理和性能优化等多个实用开发脚本。Repokemon 为开发者和宝可梦爱好者同时创造了一个有趣的交集,展示了开源社区的创造力。
RecBole-GNN - 图神经网络推荐算法开源库
GithubPyTorchRecBole-GNN图神经网络开源库开源项目推荐系统
RecBole-GNN是一个开源的图神经网络推荐算法库,基于PyTorch和RecBole构建。该库专注于复现和开发GNN推荐算法,涵盖通用、序列和社交推荐三大类别。它提供统一API、高效图处理模块和丰富的算法库,支持多种前沿GNN推荐模型。RecBole-GNN还提供详细的性能对比,为研究人员提供便捷的GNN推荐算法开发和评估平台。
implicit - 高性能Python隐式反馈协同过滤库
GithubPython库implicit协同过滤开源项目推荐系统矩阵分解
Implicit是一个开源的高性能Python协同过滤库,专为隐式反馈数据集设计。它实现了多种推荐算法,如交替最小二乘法、贝叶斯个性化排序等。支持多线程和GPU加速,适用于大规模数据处理。提供详细文档和示例,便于开发者快速构建推荐系统。
pytextrank - 基于图算法的Python自然语言处理与知识图谱工具
GithubPyTextRankspaCy图算法开源项目文本摘要自然语言处理
PyTextRank 是一个Python实现的TextRank算法库,作为spaCy管道扩展,专注于图形化自然语言处理和知识图谱应用。它支持短语提取、低成本抽取式摘要,方便将非结构化文本转化为结构化信息。
AJAX-Movie-Recommendation-System-with-Sentiment-Analysis - 基于内容的AJAX电影推荐与情感分析系统
Content-Based Recommender SystemCosine SimilarityGithubIMDBTMDB开源项目情感分析
该项目通过TMDB API获取电影详细信息,基于内容推荐电影,并使用BeautifulSoup从IMDB获取用户评论,结合情感分析进行推荐。系统利用余弦相似度计算电影之间的相似性,前端技术有HTML/CSS/JS,后端使用Flask框架。项目包括详细部署指南和API获取教程,适合具有技术基础的用户学习和使用。
denser-retriever - 多技术融合的企业级AI检索工具
AI检索器Denser RetrieverGithubxgboost向量搜索开源项目机器学习重排序
Denser Retriever是一款企业级AI检索工具,融合关键词搜索、向量数据库与机器学习重排功能,并通过xgboost技术优化。其在MTEB基准测试中表现出色,支持端到端应用,包括聊天机器人和语义搜索。项目支持Python安装,推荐使用Anaconda配置,附有详细文档和开发指南。
embedx - 高性能大规模嵌入向量训练和推理系统
Githubembedx图模型大规模embedding系统开源项目深度排序联合建模
embedx是基于C++开发的大规模嵌入向量训练和推理系统,已在微信看一看、搜一搜、腾讯新闻等12个业务中成功应用。系统可处理十亿级节点、千亿级边的图模型,以及百亿级样本、百亿特征的深度排序和召回模型。embedx支持图与深度学习的联合建模,在推荐、搜索、支付和风控等领域表现出色,实现了性能和效果的双重提升。
cornac - 多模态推荐系统比较框架
CornacGithub多模态开源项目推荐系统机器学习辅助数据
Cornac是一个多模态推荐系统比较框架,支持文本、图像等辅助数据。它便于快速实验和实现新模型,兼容TensorFlow、PyTorch等库。Cornac实现了协同过滤、内容推荐等多种算法,支持高效近似最近邻搜索。框架还提供简单的模型部署方式,有助于构建推荐系统应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号