Project Icon

XLB

基于JAX的可微分格子玻尔兹曼方法库

XLB是一款开源的格子玻尔兹曼方法库,基于JAX构建。该库支持2D和3D模拟,具有全可微分特性,能高效解决流体动力学问题。XLB支持多GPU分布式计算,可进行大规模模拟。提供多种边界条件和碰撞核选择,并采用Python接口设计,便于使用和扩展。这些特性使XLB成为物理驱动机器学习研究的有力工具。

jax - 高性能科学计算和机器学习的Python加速库
GPU加速GithubJAXXLA开源项目神经网络自动微分
JAX是一个专为高性能数值计算和大规模机器学习设计的Python库。它利用XLA编译器实现加速器导向的数组计算和程序转换,支持自动微分、GPU和TPU加速。JAX提供jit、vmap和pmap等函数转换工具,让研究人员能够方便地表达复杂算法并获得出色性能,同时保持Python的灵活性。
brax - 基于JAX的高性能物理引擎 适用于机器人和强化学习仿真
BraxGithubJAX仿真开源项目机器学习物理引擎
Brax是一款基于JAX的高性能物理引擎,专注于机器人、人体感知、材料科学和强化学习等领域的仿真应用。它支持单设备高效仿真和多设备并行仿真,无需依赖大型数据中心。Brax提供多种物理模拟管道,如MuJoCo XLA、广义坐标和基于位置的动力学,并统一API接口。此外,Brax集成了多种高效学习算法,能在短时间内完成智能体训练。
jaxdf - JAX框架打造可微分物理模拟器
GithubJAXjaxdf偏微分方程开源项目数值模拟自动微分
jaxdf是基于JAX的开源框架,用于创建可微分数值模拟器。该框架支持任意离散化,主要应用于物理系统建模,如波传播和偏微分方程求解。jaxdf生成的纯函数模型可与JAX编写的可微分程序无缝集成,适用于神经网络层或物理损失函数。框架提供自定义算子、多种离散化方法,并附有详细文档和示例。
awesome-jax - 自动微分与XLA在高性能机器学习中的应用
GithubJAXXLA编译器加速器开源项目机器学习自动微分
该页面收录了JAX相关的优质库、项目和资源,旨在帮助机器学习研究人员在GPU和TPU等加速器上实现高性能计算。资源涵盖神经网络库、强化学习工具和概率编程等多个领域,并提供了详细的库介绍、学术论文和教程。用户可以找到如Flax、Haiku、Objax等知名库,以及新兴的FedJAX、BRAX等库,适用于机器学习和科研项目中使用JAX进行快速原型开发和高效计算。
blackjax - JAX贝叶斯采样库 支持CPU和GPU运算
BlackJAXGPUGithubJAX开源项目概率编程采样器
BlackJAX是一个为JAX开发的贝叶斯采样库,支持CPU和GPU计算。它提供多种采样器,可与概率编程语言集成。适用于需要采样器的研究人员、算法开发者和概率编程语言开发者。其模块化设计便于创建和定制采样算法,促进采样算法研究。BlackJAX通过简洁API和高性能,连接了简单框架与可定制库。
sbx - Jax加持的Stable-Baselines3强化学习库
GithubStable Baselines Jax开源项目强化学习机器学习算法实现
SBX是Stable-Baselines3的Jax实现版本,集成了SAC、TQC、PPO等多种先进强化学习算法。它与SB3保持相同API,可与RL Zoo无缝对接,并提供详细使用示例。SBX为复杂环境和任务提供高效、可靠的强化学习实现。
dynamax - JAX驱动的概率状态空间模型库
GithubJAX开源项目概率模型状态空间模型隐马尔可夫模型高斯状态空间模型
Dynamax是一个利用JAX开发的概率状态空间模型库,包含隐马尔可夫模型和线性高斯状态空间模型等。该库提供低级推理算法和面向对象接口,与JAX生态系统兼容。Dynamax支持状态估计、参数估计、在线滤波、离线平滑和未来预测等功能。库中包含丰富示例和文档,便于使用和学习。
lineax - 基于JAX的线性求解和最小二乘优化库
GithubJAXLineaxPython库开源项目最小二乘法线性求解
Lineax是基于JAX开发的线性求解和最小二乘优化库,提供多种算法解决Ax = b问题。该库支持PyTree值矩阵和向量、通用线性算子及结构化矩阵,具备高效的求解器和稳定的梯度计算。Lineax优化了编译和运行性能,支持实值和复值输入,并集成JAX的自动微分、并行计算和硬件加速等功能。
flax - 灵活强大的JAX神经网络库和生态系统
FlaxGithubJAX开源项目机器学习深度学习神经网络库
Flax是一个基于JAX的高性能神经网络库,以灵活性为核心设计理念。它提供神经网络API、实用工具、教育示例和优化的大规模端到端示例。Flax支持MLP、CNN和自编码器等多种网络结构,并与Hugging Face集成,涵盖自然语言处理、计算机视觉和语音识别等领域。作为Google Research与开源社区合作开发的项目,Flax致力于促进JAX神经网络研究生态系统的发展。
flashbax - JAX强化学习高效体验回放缓冲库
FlashbaxGithubJAX开源项目强化学习深度学习经验回放缓冲区
Flashbax是一个为JAX设计的高效体验回放缓冲库,适用于强化学习算法。它提供平坦缓冲、轨迹缓冲及其优先级变体等多种缓冲类型,特点是高效内存使用、易于集成到编译函数中,并支持优先级采样。Flashbax还具有Vault功能,可将大型缓冲区保存到磁盘。这个简单灵活的框架适用于学术研究、工业应用和个人项目中的体验回放处理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号