Project Icon

med-seg-diff-pytorch

PyTorch实现的医学图像分割扩散模型

med-seg-diff-pytorch是一个基于PyTorch的医学图像分割框架,采用扩散概率模型(DDPM)和特征级条件增强技术。该项目提供简易安装和使用方法,支持自定义数据集训练,并计划增加更多功能。它为医学图像分析领域提供了一个功能强大、使用灵活的开源工具。

MedSegDiff - Pytorch

在Pytorch中实现MedSegDiff - 百度推出的最先进医学分割方法,使用DDPM和在特征级别上的增强条件,并在傅里叶空间中进行特征过滤。

致谢

  • 感谢StabilityAI的慷慨赞助,以及其他所有赞助者

  • 感谢IsamuDaniel为皮肤病变数据集添加训练脚本!

安装

$ pip install med-seg-diff-pytorch

使用方法

import torch
from med_seg_diff_pytorch import Unet, MedSegDiff

model = Unet(
    dim = 64,
    image_size = 128,
    mask_channels = 1,          # 分割有1个通道
    input_img_channels = 3,     # 输入图像有3个通道
    dim_mults = (1, 2, 4, 8)
)

diffusion = MedSegDiff(
    model,
    timesteps = 1000
).cuda()

segmented_imgs = torch.rand(8, 1, 128, 128)  # 输入归一化为0到1
input_imgs = torch.rand(8, 3, 128, 128)

loss = diffusion(segmented_imgs, input_imgs)
loss.backward()

# 经过大量训练后

pred = diffusion.sample(input_imgs)     # 传入未分割的图像
pred.shape                              # 预测的分割图像 - (8, 3, 128, 128)

训练

运行命令

accelerate launch driver.py --mask_channels=1 --input_img_channels=3 --image_size=64 --data_path='./data' --dim=64 --epochs=100 --batch_size=1 --scale_lr --gradient_accumulation_steps=4

如果你想添加自条件(使用目前为止的掩码进行条件设置),请添加 --self_condition

待办事项

  • 一些基本的训练代码,Trainer接收针对医学图像格式定制的自定义数据集 - 感谢@isamu-isozaki
  • 在中间添加任意深度的完整transformer,如simple diffusion中所做的那样

引用

@article{Wu2022MedSegDiffMI,
    title   = {MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model},
    author  = {Junde Wu and Huihui Fang and Yu Zhang and Yehui Yang and Yanwu Xu},
    journal = {ArXiv},
    year    = {2022},
    volume  = {abs/2211.00611}
}
@inproceedings{Hoogeboom2023simpleDE,
    title   = {simple diffusion: End-to-end diffusion for high resolution images},
    author  = {Emiel Hoogeboom and Jonathan Heek and Tim Salimans},
    year    = {2023}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号