Project Icon

Infinity-Instruct-7M-Gen-mistral-7B

Infinity-Instruct-7M-Gen-Mistral-7B 提升AI模型指令执行效率的开源方案

Infinity-Instruct-7M-Gen-Mistral-7B是一个公开可用的监督指令微调模型。它在Infinity-Instruct-7M和Infinity-Instruct-Gen数据集上进行优化,无需用户反馈强化学习。在AlpacaEval 2.0评测中,该模型表现优于Mixtral 8x22B v0.1、Gemini Pro和GPT-4。使用创新的训练技术,显著减少了模型训练成本,且基于与OpenHermes-2.5-Mistral-7B相同的聊天模板,专为对话场景设计。该模型和相关资源仅用于学术研究,且准确性不可担保。

Ministral-8B-Instruct-2410 - 多功能高效语言模型,兼具多语言和代码处理能力
GithubHuggingfaceMinistral-8B-Instruct-2410Mistral AI开源项目授权使用模型研究目的许可证
Ministral-8B-Instruct-2410是一款高效的语言模型,具有128k上下文窗口、函数调用支持和多语言代码训练等特点,显著提升同类模型性能。该模型适用于本地智能设备和边缘计算,经过针对性优化以提升多语言和代码处理能力。根据Mistral Research License,该模型适用于非商业研究。Ministral-8B在知识、常识、代码、数学及多语言基准测试中表现优异,为广泛应用提供了强大的支持。
Mistral-Nemo-Instruct-2407 - 多语言指令微调开源大语言模型
GithubHuggingfaceMistral-Nemo-Instruct-2407代码生成函数调用多语言支持大语言模型开源项目模型
Mistral-Nemo-Instruct-2407是Mistral AI与NVIDIA联合开发的指令微调大语言模型,基于Mistral-Nemo-Base-2407。该模型性能优异,支持128k上下文窗口,涵盖多语言和代码能力。它采用Apache 2许可证开源,可直接替代Mistral 7B,并在多项基准测试中展现卓越表现。
Mistral-Nemo-Instruct-2407-GGUF - 多语言指令微调大规模语言模型
GithubHuggingfaceMistral-Nemo-Instruct多语言大语言模型开源项目指令微调模型自然语言处理
Mistral-Nemo-Instruct-2407是一款基于Mistral-Nemo-Base-2407指令微调的大规模语言模型,支持128k上下文窗口。该模型在多语言和代码任务方面表现优异,可替代Mistral 7B使用。模型在主流基准测试中表现出色,并在多语言任务中展现强大能力。开发者可通过mistral_inference、transformers或NeMo框架使用该模型进行聊天、指令遵循和函数调用等多样化任务。Mistral-Nemo-Instruct-2407采用Apache 2许可证开源发布。
e5-mistral-7b-instruct - 多语言NLP任务的全能型模型
GithubHuggingfaceMTEB开源项目性能指标模型模型评估自然语言处理跨语言测试
e5-mistral-7b-instruct是一个多语言自然语言处理模型,在MTEB基准测试中表现出色。模型能够处理句子相似度、文本分类、信息检索和文本聚类等任务,支持英语、德语、法语等多种语言。在Amazon评论分类和BUCC双语文本挖掘等复杂NLP任务中,该模型在准确率、F1分数和平均精度(MAP)等指标上均取得了良好成绩,展现了其在跨语言和多领域应用中的实用价值。
Mistral-7B-Instruct-v0.1-GPTQ - Mistral-7B-Instruct量化模型 多种精度选项
AI模型GPTQ量化GithubHuggingfaceMistral大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.1模型的GPTQ量化版本提供4位和8位精度等多种参数选项。量化后的模型体积显著减小,性能基本不变,适合消费级GPU推理。支持通过ExLlama或Transformers加载,可用于高效文本生成。用户可根据硬件和需求选择合适版本。
mistral-7b-instruct-v0.3-bnb-4bit - Unsloth:加速大型语言模型微调的开源项目
GithubHuggingfaceUnsloth内存优化开源项目微调效率提升模型语言模型
mistral-7b-instruct-v0.3-bnb-4bit项目利用Unsloth技术提高大型语言模型的微调效率。该开源工具可将Mistral、Gemma和Llama 2等模型的微调速度提升2-5倍,同时减少70%的内存使用。项目提供多个针对不同模型的免费Colab笔记本,支持对话式和文本补全等微调任务,便于初学者实现高效模型优化。
Mistral 7B - Mistral 7B及衍生模型全面指南
AI工具Mistral 7B人工智能大语言模型开源模型自然语言处理
本站聚焦Mistral 7B开源语言模型,提供模型介绍、部署指南和在线体验。汇集微调版本导航、使用教程和研究动态,是Mistral 7B相关资源的综合参考平台。
Mistral-7B-Instruct-v0.3-AWQ - Mistral模型AWQ量化版支持高级函数调用和三代分词
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.3大语言模型开源项目模型模型量化自然语言处理
作为Mistral-7B-Instruct-v0.3的AWQ量化版本,该模型采用4比特压缩技术,在提供快速推理性能的同时保持了原有精度。通过扩展词汇表和引入第三代分词技术,增强了模型的理解能力。目前已集成到主流AI框架平台,可在搭载NVIDIA显卡的Linux或Windows系统上运行。
TinyMistral-248M - 使用小规模数据集进行高效模型预训练
GithubHuggingfaceMistral 7B参数开源项目微调模型评估结果语言模型
TinyMistral-248M基于Mistral 7B模型,参数减少至约2.48亿,专为下游任务微调设计。预训练使用了748.8万个实例,支持文本生成功能,拥有约32,768个token的上下文长度。模型在InstructMix评估中的平均困惑度为6.3,未来将在多数据集上增加训练周期,验证无需大数据集即可进行有效预训练的可能性,并在多个指标测试中表现良好。
OpenHermes-2-Mistral-7B - 基于Mistral-7B的高性能多任务语言模型
GithubHuggingfaceMistralOpenHermes人工智能开源项目模型语言模型
OpenHermes-2-Mistral-7B是一款经过精心微调的大语言模型,基于Mistral-7B架构开发。模型在GPT4All、AGIEval等多个基准测试中表现优异,具备出色的多任务处理能力。支持ChatML格式和系统提示,适用于多轮对话场景。项目开源多种量化版本,方便用户根据需求部署使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号