Project Icon

rebel-large

基于BART的端到端关系抽取模型

REBEL是一个创新的关系抽取模型,基于BART架构,将关系抽取转化为序列生成任务。该模型支持200多种关系类型识别,采用端到端设计避免了多步骤处理的错误累积。在多个基准测试中表现优异,其多语言版本mREBEL进一步扩展了语言和实体类型支持范围。

mbart-large-cc25 - 基于深度学习的多语言模型支持文本翻译与摘要微调
GithubHugging FaceHuggingfacembart-large-cc25多语言开源项目模型翻译预训练模型
mbart-large-cc25是一个多语言预训练模型,支持多种语言的翻译和文本摘要功能,涵盖了英语、中文、德语等多种语言。此模型可以在特定任务中进行微调,相关代码和文档可在PyTorch和Hugging Face上获得。在多语言交互的应用场景中,该模型表现出良好的适应性与功能性。
ChineseNER - 多模型支持的中文命名实体识别开源项目
Github中文NER命名实体识别多任务学习开源项目深度学习模型词汇增强
这是一个开源的中文命名实体识别项目,集成了多种深度学习模型。从BiLSTM-CRF到BERT-BiLSTM-CRF,再到多任务学习模型,涵盖了NER领域的主流算法。项目特色包括词汇增强、数据增强和MRC框架等创新功能。同时提供了完整的训练、评估流程和Docker部署方案,便于研究者和开发者使用。项目集成了从BiLSTM-CRF到BERT系列的多种NER模型,并创新性地引入词汇增强、数据增强和MRC框架等技术。不仅提供了详细的模型训练和评估指南,还支持Docker部署,方便研究人员和工程师快速应用到实际场景中。
bart_finetuned_keyphrase_extraction - BART微调模型实现多领域关键短语自动提取
BARTGithubHuggingface关键短语生成开源项目模型自然语言处理跨领域迁移学习
这是一个基于BART模型微调的关键短语生成项目。该模型在科学文献和新闻文本等多领域数据集上进行了训练,能够自动从文本中提取关键短语。项目利用迁移学习技术提高了模型在小规模语料库上的表现,为跨领域关键短语生成提供了有效解决方案。研究人员可以方便地使用此模型实现自动化的关键信息提取。
t5-3b - 统一多语言自然语言处理任务的创新模型
GithubHuggingfaceT5-3B多任务学习开源项目文本到文本转换模型自然语言处理预训练模型
T5-3B是一个拥有30亿参数的多语言自然语言处理模型。它采用创新的文本到文本框架,统一处理机器翻译、文档摘要、问答和分类等多种NLP任务。该模型在C4语料库上预训练,并在24个任务中进行评估,展现出优秀的多语言和多任务处理能力。T5-3B为NLP领域的迁移学习研究提供了新的思路和可能性。
deberta-v3-base - 高效预训练语言模型提升自然语言理解任务性能
DeBERTaGithubHuggingface开源项目文本分类模型深度学习自然语言处理预训练模型
DeBERTa-v3-base是一种改进的预训练语言模型,采用ELECTRA风格预训练和梯度解耦嵌入共享技术。该模型在SQuAD 2.0和MNLI等自然语言理解任务上表现优异,超越了RoBERTa等基准模型。它具有12层结构、768维隐藏层、86M骨干参数和128K词表。研究人员可通过Hugging Face Transformers库对其进行微调,应用于多种自然语言处理任务。
deberta-v2-xlarge-mnli - DeBERTa架构的大规模预训练语言模型用于自然语言推理
DeBERTaGithubHuggingface人工智能开源项目微软机器学习模型自然语言处理
deberta-v2-xlarge-mnli是基于DeBERTa V2架构的大型预训练语言模型,经过MNLI任务微调。模型包含24层,1536隐藏单元,共9亿参数。它采用解耦注意力和增强掩码解码器,在GLUE等自然语言理解基准测试中表现优异,为相关研究与应用提供了新的可能。
nli-deberta-v3-large - 高效实现自然语言推断的跨编码器
GithubHuggingfaceNatural Language Inference准确性句子分类开源项目无监督分类模型模型训练
nli-deberta-v3-large是一个基于microsoft/deberta-v3-large的跨编码器模型,专用于自然语言推断。该模型在SNLI和MultiNLI数据集上训练,并能够为句子对提供矛盾、蕴涵和中性三种标签的概率评分。模型在SNLI测试集上实现了92.20的准确率,在MNLI不匹配集上达到90.49的准确率,支持零样本分类,适合多种自然语言处理应用。
bge-en-icl - 先进的多语言自然语言处理模型
GithubHuggingfacesentence-transformers分类句子相似度开源项目检索模型特征提取
bge-en-icl是一个开源的句子嵌入模型,在MTEB基准测试的多项自然语言处理任务中表现出色。该模型支持多语言处理,适用于句子相似度计算、文本分类和信息检索等应用场景。在AmazonPolarity分类任务中,bge-en-icl达到了96.98%的准确率;在FEVER检索任务中,准确率达到92.83%。此外,该模型在其他任务如ArguAna检索和Banking77分类中也取得了优异成绩。bge-en-icl为研究人员和开发者提供了一个强大的工具,用于处理和分析各种文本数据。
gte-large-zh - 中文语义相似度与检索的卓越表现模型
GithubHuggingfaceMTEBgte-large-zhsentence-transformers开源项目模型自然语言处理语义相似度
gte-large-zh模型在MTEB中文基准测试中表现突出,涵盖句子相似度、文本分类、聚类、重排序和检索等多个任务。该模型在CMNLI和JDReview等数据集上的准确率超过80%,为中文自然语言处理应用提供了稳定的语义理解基础。
c4ai-command-r-v01 - 多语言生成和推理的高效大型语言模型
C4AI Command-RGithubHuggingface多语言生成工具使用开源项目文档引用模型生成模型
C4AI Command-R是一款35亿参数的生成模型,适用于推理、摘要和问答等多种场景,具备强大的多语言生成能力,支持包括中文在内的10种语言。该模型在Hugging Face等平台提供实验机会,其开放权重设计方便多重用途的使用。采用优化的Transformer架构,并通过有监督微调以符合人类优选方式。通过特定的提示模板,模型能有效执行引用生成,提高回答的准确度和效用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号