Project Icon

causallib

通过观察性数据的因果推断分析

Causallib是一个Python包,提供统一的因果推断方法,灵感来自scikit-learn API,支持复杂机器学习模型的集成。用户可以进行有适应性的模块化因果建模,提供更准确的效果估计。该包还包括评估工具,用于诊断模型表现差异,适用于各种治疗策略和潜在结果预测。研究人员可以使用causallib从现实世界的观察性数据中推断干预措施的因果影响,适用于医疗和社会科学等领域。更多信息请访问causallib文档。

MAPIE - 开源机器学习不确定性量化与风险控制库
GithubMAPIE不确定性量化保证覆盖率开源项目机器学习预测区间
MAPIE是一个开源Python库,用于量化机器学习模型的不确定性和控制风险。它计算可控覆盖率的置信预测区间,适用于回归、分类和时间序列分析。MAPIE还可控制多标签分类和语义分割等复杂任务的风险。该库兼容各类模型,遵循scikit-learn API,基于同行评审算法提供理论保证。MAPIE仅依赖scikit-learn和numpy,支持Python 3.7及以上版本。
awesome-machine-learning-interpretability - 负责任机器学习资源综合指南
Github人工智能开源项目机器学习模型治理解释性责任AI
此项目整理了全面的负责任机器学习资源,包括社区和官方指导、教育资源、技术工具等。涵盖解释性、公平性、隐私保护等主题的框架、数据集、书籍、课程。为负责任AI的研究和开发提供宝贵参考。项目保持更新,鼓励社区贡献,致力于推动机器学习的负责任发展。
captum - PyTorch模型可解释性和理解的开源库
CaptumGithubPyTorch开源项目模型可解释性特征归因神经网络分析
Captum是为PyTorch设计的模型可解释性库,提供集成梯度等多种算法,帮助理解模型预测依据和学习过程。它支持对抗攻击和输入扰动功能,可生成反事实解释。适用于模型开发者和可解释性研究人员,有助于改进模型性能和进行解释性研究。
fairness-indicators - Tensorflow 的公平性评估和可视化工具包
Fairness IndicatorsGithubTensorflow二分类和多分类分类器公平性指标开源项目模型评估
Fairness Indicators支持团队评估和改进模型的公平性,适用于二元和多分类模型。通过TensorFlow工具包,可以计算常见的公平性指标,并分析数据集分布及模型性能。该工具能处理大规模数据集,并提供信心区间和多阈值评估功能。Fairness Indicators与TensorFlow Data Validation、TensorFlow Model Analysis和What-If Tool紧密集成,助力优化模型。
tiny-random-GemmaForCausalLM - 轻量级Gemma因果语言模型支持自定义头部维度
GithubHuggingfacearchitectureconfighead_dim开源项目模型自定义
tiny-random-GemmaForCausalLM是一个轻量级Gemma因果语言模型实现,允许通过自定义config.head_dim参数调整模型结构。该项目参考了7B规模模型的配置方式,为开发者提供了在小规模上探索和实验不同模型架构的机会。这个MIT许可的开源项目适合研究人员和工程师快速迭代和测试新想法。
GPBoost - 融合树提升与高斯过程的先进机器学习库
GPBoostGithub开源项目机器学习树提升混合效应模型高斯过程
GPBoost是一个创新机器学习库,融合树提升、高斯过程和分组随机效应模型。它支持独立应用树提升、高斯过程和广义线性混合效应模型,主要用C++编写,提供C接口及Python和R包。GPBoost算法结合树提升和潜在高斯模型优势,提高预测函数学习效率,优化高基数分类变量处理,并适用于空间或时空数据建模。这使其成为非线性建模和复杂依赖结构分析的理想工具。
tiny-random-LlamaForCausalLM - 微型随机语言模型助力AI生成能力研究
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡片自然语言处理
tiny-random-LlamaForCausalLM是基于Hugging Face Transformers库的小型随机语言模型。这个轻量级模型为AI研究人员和开发者提供了一个实验平台,用于探索基本的文本生成功能。尽管规模小巧,但它适用于快速原型设计、测试和教育目的,可以轻松部署和定制,为AI研究和应用开发奠定基础。
arch - Python金融计量经济学工具库
ARCHGithubPython单位根检验开源项目波动率建模金融计量经济学
arch是一个开源的Python金融计量经济学库,提供ARCH模型、波动率建模、单位根检验、协整分析等功能。该库通过Cython和Numba优化性能,支持多种统计模型和检验方法,适用于金融数据分析和风险建模。arch为金融研究人员和从业者提供了灵活的分析工具,可用于处理时间序列数据、估计风险指标等任务。arch库的主要功能包括ARCH族模型、单位根检验、协整分析和自举方法等。它支持多种均值模型、波动率模型和分布假设,可用于股票收益率建模、风险价值计算等。该库还提供了多重比较程序和长期协方差估计等高级功能,是金融计量分析的综合工具集。
skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
edward - 用于概率建模、推断和模型评估的Python库
EdwardGithubPython库TensorFlow开源项目推断概率建模
Edward 是一个用于概率建模、推断和模型评估的Python库。它融合了贝叶斯统计、机器学习、深度学习和概率编程,支持多种模型,如有向图模型、神经网络、隐式生成模型和贝叶斯非参数。Edward 提供变分推断、蒙特卡罗方法、生成对抗网络等多种推断方法,并支持模型和推断的评估。构建于TensorFlow之上,支持计算图、分布式训练、CPU/GPU集成和自动微分。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号