Project Icon

rainbow-is-all-you-need

从DQN到Rainbow的深度强化学习方法

本教程详细介绍了从DQN到Rainbow的深度强化学习方法,包含理论背景和面向对象的实现。每章节都可以在Colab上直接运行,适合快速学习。涵盖DQN、DoubleDQN、优先经验回放、对抗网络、噪声网络、分布式DQN和N步学习等多个主题,欢迎贡献改进建议或代码。

DQN-Atari-Agents - 丰富DQN算法库,实现模块化训练与高效并行
AtariDDQNDQNGithubPythonRainbow开源项目
该项目提供了多种DQN算法的模块化训练方法,支持从原始像素或内存数据进行训练,并提高了训练速度。可选版本包括DDQN、Dueling DDQN等,可以通过组合Noisy layer、PER、多步目标等扩展为Rainbow算法。项目详细介绍了各类算法的使用方法及其在Atari和CartPole环境中的性能表现,适合用于研究和项目应用。
drl-zh - 深度强化学习入门,从零开始实现经典算法
Atari游戏DQNDeep Reinforcement LearningGithubPPOSAC开源项目
本课程提供深度强化学习的基础和经典算法的实用入门指导。学习者将从零开始编写DQN、SAC、PPO等算法,并掌握相关理论。课程内容还包括训练AI玩Atari游戏及模拟登月任务。同时详细介绍环境设置和代码实现步骤,支持Visual Studio Code和Jupyter Notebook,确保学习过程流畅高效。
easy-rl - 强化学习综合教程 从理论到实践
Github开源项目强化学习教程深度学习算法实战蘑菇书
Easy RL是一本全面的强化学习教程,涵盖从基础理论到高级算法的系统知识。内容包括马尔可夫决策过程、Q学习、策略梯度、PPO和DQN等关键概念。通过实例和项目,读者可掌握核心理论和实践技能。教程提供在线阅读、配套习题、代码和补充资源,适合强化学习初学者系统学习使用。
hands-on-rl - 实践驱动的强化学习进阶教程
GithubPython开源项目强化学习机器学习深度学习课程
hands-on-rl项目提供一套系统化的强化学习实践教程。该教程涵盖从Q-learning到策略梯度等核心算法,通过递进难度的案例帮助学习者掌握RL技术。内容包括出租车驾驶和登月模拟等实例,并结合深度学习知识。教程提供Python代码实现和详细解释,适合希望深入学习强化学习的研究者和开发者。
Practical_RL - 强化学习开源课程:实用技巧与实践
GithubGoogle ColabHSEPractical_RLYSDA开源项目强化学习
Practical_RL是一个专注于强化学习实用性的开源课程,提供HSE和YSDA的课堂教学及线上学习支持,涵盖英语和俄语材料。课程从基础理论到实践应用,包括价值迭代、Q学习、深度学习、探索策略、策略梯度方法、序列模型及部分观察MDP等内容。学生可以通过GitHub改进课程,使用Google Colab或本地环境进行实践。适合希望在实际问题中应用强化学习的学生和研究者。
rl-book - 强化学习理论及Python实现的教程和代码
GithubPyTorchReinforcement LearningTensorFlow开源项目理论算法
本书系统介绍强化学习,从基础理论到具体算法实现,包含基于TensorFlow和PyTorch的代码对照,实现经典和现代深度强化学习算法。提供完整数学推导和高质量代码,适合希望深入理解和应用强化学习的读者。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
DQNDeep Reinforcement LearningGithubGymTD3pytorch开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
DRL-Pytorch - PyTorch实现的深度强化学习算法集合
DRL算法GithubPyTorch人工智能开源项目强化学习深度学习
DRL-Pytorch项目提供多种常用深度强化学习算法的PyTorch实现,包括Q-learning、DQN变体、PPO、DDPG、TD3和SAC等。代码结构清晰统一,便于研究人员和开发者比较不同算法。项目还包含详细使用说明、依赖列表和学习资源推荐,有助于快速入门和实践。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
Reinforcement-Learning - 将深度强化学习与神经网络使用Python和PyTorch实现结合的课程
GithubPyTorchPythonQ学习开源项目深度强化学习神经网络
本课程深入分析了神经网络与强化学习的结合,提供了Python和PyTorch实用实现。掌握Q学习、深度Q学习、PPO和演员批评算法,通过在OpenAI Gym的RoboSchool和Atari游戏中实际应用,熟悉深度强化学习的关键技术和应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号