Project Icon

cats

REST API自动化模糊测试工具 无需编码快速生成测试

cats是一个开源的REST API模糊测试工具,能自动生成并执行大量API测试用例。它无需编码即可在短时间内完成全面的API测试,包括边界测试和异常场景。该工具具有智能测试生成、高度可配置、自动修复等特点,可帮助开发者快速发现API潜在问题,提升软件质量。

CATS logo

CI Commits

Quality Gate Status Technical Debt Coverage Bugs Code Smells

CATS documentation is available at https://endava.github.io/cats/

REST API fuzzer and negative testing tool. Run thousands of self-healing API tests within minutes with no coding effort!

  • Comprehensive: tests are generated automatically based on a large number scenarios and cover every field and header
  • Intelligent: tests are generated based on data types and constraints; each Fuzzer has specific expectations depending on the scenario under test
  • Highly Configurable: high amount of customization: you can filter specific Fuzzers, HTTP response codes, HTTP methods, request paths, provide business context and a lot more
  • Self-Healing: as tests are generated, any OpenAPI spec change is picked up automatically
  • Simple to Learn: flat learning curve, with intuitive configuration and syntax
  • Fast: automatic process for write, run and report tests which covers thousands of scenarios within minutes

Short on time? Check out the 1-minute Quick Start Guide!

Overview

By using a simple and minimal syntax, with a flat learning curve, CATS (Contract API Testing and Security) enables you to generate thousands of API tests within minutes with no coding effort. All tests are generated, run and reported automatically based on a pre-defined set of 100+ Fuzzers. The Fuzzers cover a wide range of boundary testing and negative scenarios from fully random large Unicode values to well crafted, context dependant values based on the request data types and constraints. Even more, you can leverage the fact that CATS generates request payloads dynamically and write simple end-to-end functional tests.

HTML Report

CATS

Command Line

CATS

Tutorials on how to use CATS

This is a list of articles with step-by-step guides on how to use CATS:

Some bugs found by CATS

Installation

Homebrew

> brew tap endava/tap
> brew install cats

Manual

CATS is bundled both as an executable JAR or a native binary. The native binaries do not need Java installed.

After downloading your OS native binary, you can add it to PATH so that you can execute it as any other command line tool:

sudo cp cats /usr/local/bin/cats

You can also get autocomplete by downloading the cats_autocomplete script and do:

source cats_autocomplete

To get persistent autocomplete, add the above line in .zshrc or .bashrc, but make sure you put the fully qualified path for the cats_autocomplete script.

You can also check the cats_autocomplete source for alternative setup.

There is no native binary for Windows, but you can use the uberjar version. This requires Java 17+ to be installed.

You can run it as java -jar cats.jar.

Head to the releases page to download the latest version: https://github.com/Endava/cats/releases.

Build from sources

You can build CATS from sources on you local box. You need Java 17+. Maven is already bundled.

Before running the first build, please make sure you do a ./mvnw clean. CATS uses a fork of OKHttp which will install locally under the 4.11.0-CATS version, so don't worry about overriding the official versions.

You can use the following Maven command to build the project as an uberjar:

./mvnw package -Dquarkus.package.type=uber-jar

You will end up with a cats-runner.jar in the target folder. You can run it wih java -jar cats-runner.jar ....

You can also build native images using a GraalVM Java version.

./mvnw package -Pnative

Notes on Unit Tests

You may see some error log messages while running the Unit Tests. Those are expected behaviour for testing the negative scenarios of the Fuzzers.

Experimental: Maven dependency for programmatic use

CATS doesn't have explicit support (yet) for programmatic use via JUnit or TestNG. You can however experiment with running the CatsMain class with the same arguments as you would run in the command line.

You must add these 2 dependencies:

<dependency>
    <groupId>com.squareup.okhttp3</groupId>
    <artifactId>okhttp</artifactId>
    <version>4.11.0</version>
</dependency>
<dependency>
    <groupId>com.endava</groupId>
    <artifactId>cats</artifactId>
    <version>9.0.3</version>
</dependency>

Please not that you also need to explicitly add the okhttp dependency. CATS uses a fork of okhttp that is not published in Maven central. When using CATS as a dependency, HTTP header fuzzers that prefix/suffix header values with spaces won't properly work.

Contributing

Please refer to CONTRIBUTING.md.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号