Project Icon

wav2vec2

Wav2Vec2模型在Habana Gaudi处理器上的优化训练配置

该配置针对Wav2Vec2音频模型在Habana Gaudi处理器上的优化。它包含自定义AdamW实现、梯度裁剪和混合精度训练等功能,适用于单HPU和多HPU环境。通过Optimum Habana接口可进行模型加载、训练和推理,适合音频分类等任务。支持bf16混合精度训练,平衡性能和准确度。该配置文件不包含模型权重,仅提供GaudiConfig用于HPU上的运行设置。

bert-base-uncased - 基于Habana Gaudi处理器的BERT预训练语言模型配置
BERTGithubHPUHugging FaceHuggingfaceOptimum Habana开源项目模型混合精度训练
这是一个专为Habana Gaudi处理器(HPU)优化的bert-base-uncased模型配置文件,包含GaudiConfig完整配置,集成了自定义AdamW实现和梯度裁剪等功能。通过Transformers库标准接口和混合精度训练,可在HPU上实现高性能的模型训练和部署。
distilbert-base-uncased - Habana Gaudi处理器的DistilBERT训练配置方案
DistilBERTGithubHPUHabanaHuggingface开源项目模型模型训练深度学习
这是一个用于Habana Gaudi处理器(HPU)的DistilBERT基础模型配置文件,集成了AdamW实现、梯度裁剪和混合精度训练功能。借助Optimum Habana接口实现模型在HPU设备上的训练和推理,支持问答等任务处理,可使用bf16混合精度进行训练
gpt2 - HPU处理器上运行GPT2的Gaudi配置方案
GithubHuggingfaceOptimum Habana人工智能开源项目机器学习模型模型训练硬件加速
GPT2模型在Habana Gaudi处理器(HPU)上的优化配置方案,通过GaudiConfig文件实现Fused Adam优化、梯度裁剪和混合精度训练。基于Optimum Habana接口,支持单/多HPU环境下的模型加载、训练和推理,可用于各类下游任务。配置方案与Transformers库完全兼容,并提供HPU专属训练参数。
vit - 在Habana Gaudi HPU上高效运行ViT模型的配置指南
Gaudi处理器GithubHugging FaceHuggingfaceOptimum Habana图像分类开源项目模型混合精度
了解如何使用Habana Gaudi HPU进行ViT模型高效训练和部署,提供如自定义AdamW和融合梯度剪裁等特定训练参数。支持bf16混合精度训练以提升性能和精度。探索Habana HPU在增强Transformer和Diffuser模型方面的应用。
wav2vec2-large-lv60 - 深度学习实现高性能语音识别 仅需少量标记数据
GithubHuggingfaceWav2Vec2开源项目模型深度学习语音识别语音预训练音频处理
Wav2Vec2是Facebook开发的语音预训练模型,通过无监督学习从原始音频中提取语音特征。该模型在大规模未标注数据上预训练后,能够以极少量的标注数据实现高性能语音识别。在LibriSpeech测试集上,全量标注数据训练可达1.8/3.3词错率;仅用1小时标注数据即超过先前100小时数据的最佳结果;10分钟标注数据也能实现4.8/8.2词错率。Wav2Vec2为低资源环境下的高质量语音识别提供了新的可能性。
qwen - Qwen模型在Habana Gaudi处理器上的配置与训练概述
Gaudi处理器GithubHuggingfaceOptimum HabanaQwen模型Transformer开源项目模型混合精度
通过Optimum Habana接口,在Habana Gaudi处理器上实现Qwen模型的高效加载和训练。该接口简化了单个和多个HPU设置下的训练流程,并支持自定义AdamW优化器、梯度剪辑和PyTorch混合精度功能。用户可以通过配置GaudiConfig文件以及特定的HPU训练参数,利用语言模型示例代码,以充分发挥HPUs的性能。更多信息和详细用例请参考Hugging Face的文档及GitHub资源。
bert-large-uncased-whole-word-masking - BERT大模型在Habana HPU上的性能优化配置
BERTGithubHabana GaudiHugging FaceHuggingfaceOptimum Habana开源项目模型混合精度训练
此项目为bert-large-uncased-whole-word-masking模型提供Habana Gaudi处理器(HPU)优化配置。通过GaudiConfig文件设置关键参数,如fused Adam优化器和混合精度训练,实现HPU上高效的模型操作。支持单HPU和多HPU环境,适用于多种下游任务。开发者可使用简单的命令行参数,轻松部署BERT大模型到Habana硬件上,获得显著的性能提升。
wav2vec2-hausa2-demo-colab - wav2vec2-large-xlsr-53 微调的 Hausa 语音识别模型
GithubHausa语Huggingfacewav2vec2开源项目模型深度学习自然语言处理语音识别
wav2vec2-large-xlsr-53 模型在 Common Voice 数据集上微调,专门用于 Hausa 语音识别。模型在评估集上达到 0.7237 的词错误率,为 Hausa 语音识别提供了基础解决方案。尽管训练细节有限,但采用了 Adam 优化器和混合精度训练等先进技术,为进一步改进奠定了基础。这个开源的 Hausa 语音识别模型可用于语音转文本、语言学研究或开发针对 Hausa 语言的语音应用。它展示了迁移学习在低资源语言处理中的潜力,为非洲语言技术的发展贡献力量。
t5 - Optimum Habana为Transformer模型提供Gaudi处理器加速支持
GithubHPUHugging FaceHuggingfaceOptimum HabanaT5开源项目模型自然语言处理
Optimum Habana是一个开源项目,旨在连接Hugging Face Transformers和Diffusers库与Habana Gaudi处理器(HPU)。该项目提供了工具集,支持在单个或多个HPU上高效加载、训练和推理各类下游任务模型。其中包含了T5模型的GaudiConfig配置文件,实现了在Gaudi处理器上的优化运行。用户可以通过配置来使用Habana定制的AdamW实现和融合梯度裁剪等HPU专属功能,从而提升模型性能。
clip - Habana Gaudi HPU优化的视觉语言模型配置与训练方案
CLIPGithubHugging FaceHuggingfaceOptimum Habana人工智能开源项目模型模型训练
Optimum Habana为Habana Gaudi处理器(HPU)提供了CLIP模型的优化配置,实现与Hugging Face库的集成。支持单机和多HPU环境下的模型操作,包含自定义AdamW、梯度裁剪和混合精度训练等优化。项目提供COCO数据集微调示例,展示了如何充分利用HPU性能进行视觉语言模型训练。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号