Project Icon

wav2vec2

Wav2Vec2模型在Habana Gaudi处理器上的优化训练配置

该配置针对Wav2Vec2音频模型在Habana Gaudi处理器上的优化。它包含自定义AdamW实现、梯度裁剪和混合精度训练等功能,适用于单HPU和多HPU环境。通过Optimum Habana接口可进行模型加载、训练和推理,适合音频分类等任务。支持bf16混合精度训练,平衡性能和准确度。该配置文件不包含模型权重,仅提供GaudiConfig用于HPU上的运行设置。

wav2vec2-base - Facebook开发的语音表征学习模型实现低资源语音识别
GithubHuggingfaceWav2Vec2开源项目模型深度学习自监督学习语音识别语音预训练
Wav2Vec2-Base是Facebook开发的语音预训练模型,基于16kHz采样语音音频。该模型通过掩蔽输入语音的潜在空间和解决对比学习任务,学习语音表征。在LibriSpeech基准测试中,即使只使用少量标注数据,也能取得优异成绩,证明了低资源语音识别的可行性。研究人员可以利用此模型进行微调,应用于不同的语音识别任务。
llama - Habana Gaudi处理器优化的Hugging Face模型训练框架
GithubHPUHuggingfaceLlama模型Optimum Habana开源项目微调模型混合精度
Optimum Habana是一个为Habana Gaudi处理器(HPU)优化的深度学习训练框架,支持Hugging Face Transformers和Diffusers库。该框架提供简单易用的工具,实现模型快速加载、单/多HPU训练和推理。它集成了Habana定制的AdamW实现和梯度裁剪等优化特性,支持PyTorch混合精度训练,为大规模语言模型提供高效的硬件加速训练方案。
swin - 使用Habana Gaudi实现高效Transformer部署与训练
GithubHabanaHuggingfaceOptimum HabanaSwin Transformer开源项目模型混合精度训练
Optimum Habana是Hugging Face Transformers和Diffusers库与Habana Gaudi处理器之间的接口,提供针对单一和多HPU的高效模型加载、训练和推理工具。该项目包含Swin Transformer模型的GaudiConfig,支持Habana定制的AdamW优化器、梯度剪裁和Torch Autocast混合精度。采用bf16混合精度训练以提升性能,并提供图像分类示例脚本供开发者参考。
wav2vec2-btb-cv-ft-btb-cy - 基于微调的语音识别模型,提升准确度与适用性
GithubHuggingfacewav2vec2开源项目损失率模型模型优化自动语音识别训练参数
此AI模型基于DewiBrynJones的wav2vec2-xlsr-53-ft-btb-cv-cy微调而成,专注提升自动语音识别精确度。评估词错误率为0.3402,表现出明显改善。使用Adam优化器,学习率为0.0003,训练批次为4。适用于高精度需求的语音识别场景,但因缺乏训练数据和用途的细节说明,适用性需谨慎评估。
roberta-large - 基于HPU的深度学习模型优化配置和训练方案
GithubHuggingfaceOptimum HabanaRoBERTa开源项目模型模型训练深度学习硬件加速
这是一个专门为roberta-large模型开发的HPU优化配置方案。项目基于Optimum Habana框架,集成了Hugging Face生态系统,提供GaudiConfig配置文件实现混合精度训练、AdamW优化和梯度裁剪等核心功能。支持单机及多机HPU环境下的模型训练和部署,可用于问答等自然语言处理任务。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
wav2vec2-large-960h - 大规模预训练语音识别模型实现低资源高性能
GithubHuggingfaceLibrispeechWav2Vec2开源项目模型深度学习自然语言处理语音识别
Wav2Vec2-Large-960h是Facebook开发的预训练语音识别模型,在960小时LibriSpeech数据上微调。采用自监督学习从原始音频学习表示,在低资源场景下表现优异。LibriSpeech测试集上词错误率为1.8/3.3。模型可用于语音转写,提供了详细使用示例。
wav2vec2-base-superb-ks - 高效的关键词识别音频分类模型
GithubHuggingfaceSUPERBWav2Vec2关键词识别开源项目模型语音命令音频分类
Wav2Vec2-Base模型支持SUPERB关键字识别任务,具备高准确性和快速响应的特点。该模型预训练于16kHz语音音频,采用Speech Commands数据集,通过Hugging Face的管道实现关键词检测,适应实时设备应用。
albert-xxlarge-v1 - Habana Gaudi处理器上的ALBERT XXL模型运行配置与效率提升方案
ALBERT XXLGithubHPUHugging FaceHuggingfaceTransformers开源项目模型模型部署
该项目详细介绍了在Habana's Gaudi处理器上配置和运行ALBERT XXL模型的方法,采用GaudiConfig实现关键功能,如自动混合精度、Habana的定制AdamW实现和融合梯度裁剪等。通过提供的操作指导,用户可以高效利用Habana HPU进行模型加载、训练和推理。文档中还包含示例脚本及指南,帮助在SQuAD数据集上微调模型,探索Habana HPU的应用潜力。
wav2vec2-large-robust-ft-libri-960h - 多领域预训练的大规模语音识别模型
GithubHuggingfaceLibrispeechWav2Vec2开源项目机器学习模型自监督学习语音识别
wav2vec2-large-robust-ft-libri-960h是一个基于Wav2Vec2架构的大规模语音识别模型。该模型在多个领域的音频数据集上进行了预训练,包括Libri-Light、CommonVoice、Switchboard和Fisher,涵盖了有声读物、众包语音和电话交谈等多种音频类型。随后,模型在960小时的Librispeech数据集上进行了微调。这种多领域预训练和目标域微调的方法显著提高了模型在跨领域语音识别任务中的性能。模型支持16kHz采样率的语音输入,适用于需要处理多样化音频数据的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号