Project Icon

opus-mt-en-it

基于Transformer的英意机器翻译模型

opus-mt-en-it是一个基于Transformer架构的英语到意大利语机器翻译模型。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在多个测试集上表现优异,其中Tatoeba测试集达到48.2 BLEU分和0.695 chr-F分。模型提供预训练权重下载和评估结果查看,可用于英意翻译任务。

opus-mt-ru-en - 赫尔辛基大学开发的俄英机器翻译模型
GithubHelsinki-NLPHuggingfaceTransformer模型俄语翻译开源项目机器翻译模型英语翻译
opus-mt-ru-en是赫尔辛基大学语言技术研究组开发的俄英机器翻译模型。该模型采用Transformer-align架构,在OPUS数据集上训练,在多个新闻测试集和Tatoeba测试集上均展现出优秀性能。研究人员可通过Hugging Face平台使用这一开源模型进行翻译和文本生成。模型采用CC-BY-4.0许可证,为自然语言处理研究提供了宝贵资源。
opus-mt-en-eu - 基于Transformer的英语-巴斯克语机器翻译模型 Tatoeba测试集BLEU 31.8
GithubHuggingfaceTatoeba-Challengetransformer-align巴斯克语开源项目机器翻译模型英语
opus-mt-en-eu是一个英语到巴斯克语的机器翻译模型,基于transformer-align架构构建。模型使用SentencePiece进行预处理,在Tatoeba测试集上达到31.8 BLEU分数和0.590 chr-F分数。由Helsinki-NLP开发并以Apache-2.0许可发布,适用于英语到巴斯克语的翻译任务。模型支持单向翻译,可应用于需要高质量英巴翻译的场景。
opus-mt-en-af - 英语到南非荷兰语翻译模型,使用变压器对齐和标准化预处理
BLEU评分GithubHuggingfaceSentencePieceopus-mt-en-aftransformer-align开源项目模型翻译
该项目提供了英语到南非荷兰语的机器翻译模型,基于transformer-align算法和OPUS数据集,并采用了标准化和SentencePiece预处理。用户可以获取模型的原始权重和翻译测试结果,Tatoeba测试集的BLEU得分为56.1,显示出较高的翻译准确度。
opus-mt-gmw-gmw - 开源的西日耳曼语系互译转换模型
BLEUGithubHuggingfaceOPUS开源项目机器翻译模型翻译评测西日耳曼语
opus-mt-gmw-gmw是基于transformer架构的西日耳曼语系翻译模型,支持德语、英语、荷兰语等18种语言间的互译转换。该模型在德英互译新闻测试中表现优异,BLEU评分达25-35分。模型使用SentencePiece分词技术,需添加目标语言标识才可运行。
Opus-MT - 多语言神经机器翻译的开源框架
GithubMarian-NMTOPUS-MT多语言开源开源项目机器翻译
Opus-MT是一个开源的神经机器翻译项目,基于Marian-NMT框架开发。该项目利用OPUS数据集训练模型,结合SentencePiece分词和eflomal词对齐技术,提供多语言翻译功能。Opus-MT支持基于Tornado的Web应用和WebSocket服务两种部署方式,并提供大量预训练模型供用户下载。在Tiyaro.ai平台上,Opus-MT部署了543个在线演示API,方便用户体验。这个项目致力于为全球用户提供开放、便捷的翻译服务。
opus-mt-es-fr - 开源西班牙语-法语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer模型开源项目机器翻译模型法语西班牙语
opus-mt-es-fr是基于transformer-align架构开发的西班牙语-法语机器翻译模型。模型在新闻测试集上实现32-35的BLEU评分,在Tatoeba测试集达到58.4分。项目采用OPUS数据集训练,使用normalization和SentencePiece技术预处理数据。
opus-mt-gmq-en - 北日耳曼语到英语的翻译模型
GithubHuggingfaceNorth Germanic languagesTatoeba-Challenge开源项目模型翻译英语
这是一个基于transformer模型的项目,专注于将北日耳曼语言翻译为英语。使用了SentencePiece进行预处理,支持多种语言,比如丹麦语、挪威语和瑞典语。在Tatoeba测试集上,获得了58.1的BLEU评分。用户可以通过提供的链接下载原始模型权重和测试集,适合对多语言翻译有研究兴趣的开发者和研究人员。
opus-mt-en-de - 赫尔辛基大学开发的英德神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目机器翻译模型神经网络模型自然语言处理英德翻译
opus-mt-en-de是赫尔辛基大学开发的英德神经机器翻译模型。它基于OPUS语料库训练,适用于文本翻译和生成。模型在多个新闻测试集上表现优异,BLEU和chr-F评分突出。研究人员可通过Hugging Face平台便捷使用该模型进行翻译研究和应用开发。
opus-mt-tc-big-en-tr - OPUS-MT项目开发的英土双语神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT开源项目机器翻译模型神经网络模型英语到土耳其语
opus-mt-tc-big-en-tr是OPUS-MT项目开发的英语到土耳其语神经机器翻译模型。该模型基于Transformer架构,在多个数据集上表现出色,最高BLEU分数达42.3。模型支持通过Hugging Face Transformers库使用,为英土翻译提供了可靠的解决方案。OPUS-MT项目旨在为全球多种语言对开发开源的神经机器翻译模型。
opus-mt-tc-big-en-pt - 从英译葡的先进神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT句子标记开源项目机器翻译模型神经机器翻译
该开源项目提供的神经机器翻译模型,旨在高效地将英语翻译为葡萄牙语。作为OPUS-MT项目的一部分,模型采用Marian NMT框架训练,并转化到PyTorch以兼容Transformers库。利用flores101-devtest等高质量数据集进行训练与评估,提供多语言目标支持,可应用于多种翻译场景。通过简单的Python示例代码,用户可以快速上手执行翻译任务。项目获得了欧盟资助,并得到了CSC -- IT Center for Science的支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号