Project Icon

opus-mt-fi-de

基于Transformer架构的芬兰语德语机器翻译模型在Tatoeba测试集达到45.2 BLEU分数

Helsinki-NLP基于transformer-align架构开发的芬兰语德语机器翻译模型,在OPUS数据集训练完成。模型使用normalization和SentencePiece预处理方法,在Tatoeba测试集获得45.2 BLEU分数和0.637 chr-F值。模型权重与测试数据已通过OPUS-MT-models平台开放获取

opus-mt-da-de - 基于Transformer架构的丹麦语-德语机器翻译模型
GithubHuggingfaceopus-mt-da-de开源项目数据集机器翻译模型模型评估语言模型
opus-mt-da-de是一个开源的丹麦语到德语机器翻译模型,基于Transformer架构设计。该模型使用OPUS数据集训练,经过规范化和SentencePiece预处理。在Tatoeba测试集上,模型取得57.4的BLEU分数和0.740的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,并附有测试集翻译结果供评估参考。
opus-mt-en-de - 赫尔辛基大学开发的英德神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目机器翻译模型神经网络模型自然语言处理英德翻译
opus-mt-en-de是赫尔辛基大学开发的英德神经机器翻译模型。它基于OPUS语料库训练,适用于文本翻译和生成。模型在多个新闻测试集上表现优异,BLEU和chr-F评分突出。研究人员可通过Hugging Face平台便捷使用该模型进行翻译研究和应用开发。
opus-mt-de-fr - 德语至法语翻译模型,采用OPUS数据集实现高效
GithubHuggingfacebenchmarkopus-mt-de-fr开源项目性能模型翻译
项目采用Transformer-Align模型,致力于德语至法语翻译,基于OPUS数据集进行训练。通过正则化和SentencePiece进行预处理,提供原始权重、测试集翻译及评分结果。模型在多个基准测试中表现突出,例如euelections_dev2019的BLEU评分为32.2,Tatoeba得分达到49.2,展现优秀的翻译能力。
opus-mt-fi-en - 芬兰语-英语机器翻译的开源transformer模型
EnglishFinnishGithubHuggingfaceOPUSTatoeba-Challenge开源项目机器翻译模型
opus-mt-fi-en是一个基于transformer-align架构的芬兰语到英语翻译模型。该模型在多个新闻测试集上展现了优秀性能,BLEU评分最高达32.3。模型采用SentencePiece进行预处理,并在Tatoeba测试集上获得53.4的BLEU分数和0.697的chrF分数。这个开源项目为需要芬兰语到英语高质量翻译的应用场景提供了有力支持。
opus-mt-no-de - 挪威语至德语双向机器翻译模型 实现29.6 BLEU评分
GithubHuggingfaceTatoeba-Challengetransformer-align开源项目德语挪威语机器翻译模型
opus-mt-no-de是一个开源的挪威语-德语神经机器翻译模型。该模型采用transformer-align架构,支持从挪威语的两种书面变体(Nynorsk和Bokmål)到德语的转换。模型使用SentencePiece进行文本预处理,在Tatoeba评测集上取得29.6 BLEU分数。项目开源于2020年6月,提供完整的模型文件及测试数据。
opus-mt-de-es - 德语到西班牙语的智能翻译工具,支持更高的翻译准确性
BLEU评分GithubHuggingfaceopus-mt-de-es开源项目模型翻译模型语言对预处理
该开源项目通过使用transformer-align模型,将德语翻译为西班牙语,依托opus数据集,进行标准化和SentencePiece的预处理,提升翻译的准确性。用户可以下载模型的原始权重并查看相应的翻译测试集及评分,以了解其性能。在Tatoeba.de.es测试集中获得了48.5分的BLEU评分和0.676的chr-F得分,其高效性能在翻译领域具备一定的竞争力。
opus-mt-fr-de - transformer-align架构的法德翻译模型,适用于新闻政治等多领域
GithubHuggingfaceopus-mt-fr-de开源项目数据集机器翻译模型神经网络语言模型
该法德翻译模型基于transformer-align架构,使用OPUS数据集训练。模型在多个测试集上表现出色,Tatoeba测试集达49.1 BLEU分,新闻领域测试集普遍达22-28 BLEU分,在euelections_dev2019测试集上达26.4 BLEU分。采用normalization和SentencePiece预处理,适用于新闻、政治等多领域翻译。模型权重和测试集翻译结果可供下载使用。
opus-mt-de-en - 基于OPUS数据集的德英机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer模型开源项目德语到英语翻译机器翻译模型
opus-mt-de-en是一个基于OPUS数据集的德语到英语机器翻译模型。该模型采用transformer-align架构,并经过规范化和SentencePiece预处理。在多个新闻测试集上,模型表现优异,最高BLEU分数达43.7。模型支持多种测试集的翻译和评估,能够提供准确的德英翻译服务。该模型在新闻、科技等领域的翻译任务中表现尤为出色,适用于需要高质量德英翻译的各种应用场景。
opus-mt-en-fi - 开源神经机器翻译模型实现英语到芬兰语的准确转换
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英语到芬兰语语言模型
opus-mt-en-fi是一个开源的英语到芬兰语翻译模型,基于transformer架构。该模型使用OPUS数据集和bt-news数据进行训练,采用normalization和SentencePiece进行预处理。在newstest2019-enfi测试集上,模型实现了25.7的BLEU分数和0.578的chr-F分数,显示出较高的翻译准确度。模型提供原始权重下载和测试集翻译结果,方便研究者和开发者使用和评估。
opus-mt-de-it - 德语到意大利语的开源翻译模型
BLEUGithubHuggingfaceSentencePieceopus-mt-de-it开源项目数据集模型翻译
该开源项目使用transformer-align模型,提供德语到意大利语的高效翻译。通过Normalization和SentencePiece进行预处理,确保翻译的精准性和流畅性。用户可下载模型原始权重和测试集进行评估。模型在Tatoeba数据集上的评估显示,BLEU得分为45.3,chr-F得分为0.671,表现出良好的翻译性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号