Project Icon

opus-mt-fi-de

基于Transformer架构的芬兰语德语机器翻译模型在Tatoeba测试集达到45.2 BLEU分数

Helsinki-NLP基于transformer-align架构开发的芬兰语德语机器翻译模型,在OPUS数据集训练完成。模型使用normalization和SentencePiece预处理方法,在Tatoeba测试集获得45.2 BLEU分数和0.637 chr-F值。模型权重与测试数据已通过OPUS-MT-models平台开放获取

opus-mt-ca-fr - 加泰罗尼亚语转法语的高效开源翻译工具
BLEU分数Cat-FraGithubHuggingfaceSentencePieceTatoeba-Challenge开源项目模型翻译
该开源项目支持将加泰罗尼亚语翻译为法语,基于transformer-align模型进行构建,并包含规范化与SentencePiece预处理环节。在Tatoeba测试集上的BLEU评分达52.4,展现出可靠的翻译质量,适用于精确翻译和自然语言处理领域的应用。项目包含模型权重和测试集下载链接,便于用户进一步研究及使用。
opus-mt-en-sv - 基于Transformer的英瑞双语神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-svtransformer开源项目机器翻译模型语言模型
opus-mt-en-sv是一个开源的英语到瑞典语机器翻译模型,基于Transformer架构开发。该模型在Tatoeba测试集上实现60.1的BLEU分数和0.736的chr-F分数,展示了优秀的翻译质量。模型训练采用OPUS数据集,并应用normalization和SentencePiece进行预处理,旨在提供准确的英瑞双语文本转换。
opus-mt-en-hu - 基于Transformer的英匈双语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-hutransformer开源项目机器翻译模型自然语言处理
opus-mt-en-hu是一个英语到匈牙利语的机器翻译模型,采用Transformer架构设计。该模型基于OPUS数据集训练,应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型实现了40.1的BLEU分数和0.628的chr-F分数,表现出良好的翻译能力。模型提供了原始权重和测试集翻译结果供下载,便于进行评估和实际应用。
opus-mt-cs-en - 捷克语到英语的开源机器翻译模型
BLEUGithubHuggingfaceSentencePieceopus-mt-cs-entransformer-align开源项目模型翻译
opus-mt-cs-en是一种捷克语到英语的开源翻译模型,使用transformer-align架构和OPUS数据集,经过SentencePiece处理。可以下载2019年12月18日的模型权重以进行试用。
opus-mt-en-es - 基于Transformer的英西机器翻译模型
GithubHuggingfaceOPUSTatoeba开源项目模型翻译模型英语西班牙语
opus-mt-en-es是一个开源的英语到西班牙语机器翻译模型,基于Transformer架构。该模型在新闻测试集上BLEU分数介于30-39之间,在Tatoeba测试集上BLEU分数达54.9,chrF分数为0.721。模型采用SentencePiece进行预处理,适用于各种英西翻译任务。项目开源于Hugging Face,提供模型权重下载。模型由Helsinki-NLP团队开发,使用OPUS平行语料库训练。除了高性能表现外,opus-mt-en-es还提供了完整的测试集翻译结果和评估分数,便于研究人员进行比较和分析。该模型适用于需要高质量英西翻译的各种应用场景。
opus-mt-hi-en - 基于OPUS数据集的印地语-英语开源机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hi-en开源项目数据集机器翻译模型语言模型
opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。
opus-mt-sk-en - 斯洛伐克语到英语的开源机器翻译模型
BLEUGithubHuggingfaceOPUSopus-mt-sk-en开源项目模型翻译
opus-mt-sk-en是一个开源的Transformers模型,用于将斯洛伐克语翻译为英语。该模型基于opus数据集,并通过规范化和SentencePiece技术进行预处理。在JW300测试集上,模型表现良好,获得42.2的BLEU分数。此工具适用于需要高质量翻译的研究人员和开发者。
opus-mt-mul-en - Transformer架构的多语种英语神经机器翻译模型
BLEU评分GithubHuggingfaceOPUS多语言模型开源项目机器翻译模型语言对
opus-mt-mul-en是基于Transformer架构的多语种到英语神经机器翻译模型。该模型支持200多种语言翻译为英语,覆盖范围广泛。在多个标准测试集上表现优异,尤其擅长欧洲语言翻译。模型采用SentencePiece分词技术,能够处理低资源语言,是一款功能强大的通用多语言翻译工具。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
opus-mt-en-it - 基于Transformer的英意机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTtransformer模型开源项目机器翻译模型英语到意大利语
opus-mt-en-it是一个基于Transformer架构的英语到意大利语机器翻译模型。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在多个测试集上表现优异,其中Tatoeba测试集达到48.2 BLEU分和0.695 chr-F分。模型提供预训练权重下载和评估结果查看,可用于英意翻译任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号