Project Icon

bert-fa-base-uncased-sentiment-snappfood

ParsBERT波斯语评论情感分析模型

ParsBERT波斯语情感分析模型针对SnappFood外卖平台的用户评论进行情感分类。该模型基于ParsBERT v2.0架构,使用7万条标注数据训练,可将评论准确分类为正面或负面情绪。模型在测试中实现87.98%的F1分数,并提供Colab环境供开发者使用。

distilcamembert-base-sentiment - DistilCamemBERT-Sentiment揭示法语情感分析的高效选择
CamemBERTDistilCamemBERTGithubHuggingface开源项目情感分析模型模型压缩法语
DistilCamemBERT-Sentiment是一种优化的法语情感分析模型,通过使用Amazon Reviews和Allociné数据集微调,降低偏差。相较其他基于CamemBERT的方案,该模型缩短了推断时间,并在精确度和top-2准确率上表现良好,适合用于高效生产环境。
albert-base-v2-emotion - ALBERT架构情感分析模型:Twitter数据集微调与性能评估
AlbertGithubHuggingface开源项目情感分析文本分类机器学习模型自然语言处理
albert-base-v2-emotion是一个基于ALBERT架构的情感分析模型,在Twitter情感数据集上进行了微调。该模型在准确率和F1分数方面分别达到93.6%和93.65,展现了优秀的性能。模型训练采用HuggingFace Trainer,使用2e-5学习率、64批量大小和8轮训练。与同类模型相比,albert-base-v2-emotion在性能和处理速度间取得了平衡。开发者可以通过简洁的Python代码集成此模型,轻松实现文本情感分类功能。
distilbert-base-uncased-go-emotions-student - 面向GoEmotions数据集的高效情感分类模型
GithubGoEmotionsHuggingface开源项目文本分类模型模型蒸馏语言模型零样本分类
该模型运用未标注GoEmotions数据集,利用零样本学习技术进行精炼。尽管其性能可能略逊于完全监督下的模型,但它展示了如何将复杂的自然语言推理模型简化为高效的模型,以便在未标注数据上进行分类器训练。
SocialBERT-social - ESG领域社会文本分类的优化语言模型
ESGGithubHuggingfaceSocialBERT人工智能开源项目模型社会文本分类自然语言处理
SocialBERT-social是专注于ESG领域社会文本分类的高效语言模型。通过在SocialBERT-base基础上利用2k社会数据集进行微调,该模型大幅提升了社会文本识别精度。它与Hugging Face pipeline无缝集成,适用于复杂的ESG分析和风险评估任务。项目还提供了详尽的使用指南和相关论文,为研究者和实践者提供了全面的支持。
twitter-xlm-roberta-base-sentiment-multilingual - XLM-RoBERTa模型在多语言推特情感分析中的应用
GithubHuggingfaceXLM-RoBERTasentiment analysistweetnlp多语言开源项目文本分类模型
本项目是基于cardiffnlp/twitter-xlm-roberta-base模型针对多语言推特情感分析进行的微调。模型在cardiffnlp/tweet_sentiment_multilingual数据集上训练,通过tweetnlp库实现。测试结果显示,模型在F1分数和准确率方面均达到约69%的性能。研究人员和开发者可使用简单的Python代码调用此模型,为多语言社交媒体内容分析提供了实用的解决方案。
politicalBiasBERT - BERT微调模型实现政治倾向文本自动分类
BERTGithubHuggingface开源项目政治偏见文本分类机器学习模型自然语言处理
politicalBiasBERT是一个基于BERT模型微调的政治倾向分析工具。该模型通过大量政治文本训练,能够自动将输入文本分类为左派、中立或右派。研究人员和开发者可使用简单的Python代码调用此模型,快速分析文本的政治倾向。这一工具为政治文本分析和舆情研究提供了有力支持。
bert-base-arabertv2 - 阿拉伯语自然语言预训练模型 支持多任务场景应用
AraBERTGithubHuggingface开源项目机器学习模型自然语言处理阿拉伯语预训练模型
AraBERTv2是一个阿拉伯语自然语言处理模型,基于200M句子数据集训练,支持情感分析、命名实体识别和智能问答等应用场景。模型采用Farasa分词技术优化词汇处理,通过Hugging Face平台提供PyTorch、TensorFlow等多框架版本。在多项基准测试中,该模型展现出较好的语言理解能力。
toxic-comment-model - 使用DistilBERT进行在线毒性评论分类的模型与偏见分析
DistilBERTGithubHuggingface偏差培训数据开源项目模型毒性评论
该模型基于DistilBERT进行精调,专为在线毒性评论分类设计。尽管总体表现出色,但在识别某些身份群体时表现出偏见,如穆斯林和犹太人。通过示例代码能快速应用此模型,其在10000条测试数据中取得94%的准确率,但f1-score为0.59。更多信息及训练代码可在指定GitHub仓库获取。
indonesian-roberta-base-sentiment-classifier - 印尼语RoBERTa情感分类器:高精度的开源NLP工具
GithubHuggingfaceRoBERTa印尼语情感分类开源项目情感分析模型深度学习自然语言处理
这是一个基于RoBERTa架构的印尼语情感分类器,在indonlu的SmSA数据集上微调而成。模型在评估集上展现出卓越性能,准确率达94.36%,F1值达92.42%。它支持多种深度学习框架,易于集成到各类情感分析应用中。作为开源项目,该模型为印尼语自然语言处理领域提供了一个高效可靠的工具,推动了相关研究和应用的发展。模型采用了124M参数的RoBERTa Base架构,在印尼语评论和评论数据上训练。它不仅在评估集上表现优异,在基准测试集上也达到了93.2%的准确率和91.02%的F1值。该项目提供了详细的使用说明和评估结果,方便研究者和开发者快速上手和复现实验。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号