Project Icon

siglip-so400m-14-980-flash-attn2-navit

提升视觉模型分辨率与NaViT策略融合

项目提升视觉塔最大分辨率到980x980,结合NaViT策略,支持变分辨率及纵横比自适应的图像处理。这些更新确保与原模型的向后兼容性,同时扩展了视觉处理潜力。通过插值位置嵌入提升分辨率,NaViT策略实现灵活性。用户无需指定patch_attention_mask即可兼容旧版本,享受新功能的优势,确保模型在高效处理高分辨率图像时保持兼容性。

multidiffusion-upscaler-for-automatic1111 - 生成与图像放大技术,适用于低显存环境
ControlNetDemofusionGithubTiled DiffusionVAEsd-webui开源项目
通过瓦片扩散与VAE技术,该扩展支持在有限显存条件下生成或放大超大图像(≥2K)。主要功能包括瓦片VAE、瓦片扩散、区域提示控制和噪声反演,并兼容ControlNet、StableSR和SDXL等高级功能。项目免费开放使用和修改,自2023.3.28起代码不得用于商业贩售。访问wiki页面获取更多详细文档和教程。
llava-v1.6-vicuna-7b-hf - 改进的多模态AI模型 增强图像理解和常识推理能力
GithubHuggingfaceLLaVA-Next人工智能助手图像文本生成多模态模型开源项目模型视觉语言处理
LLaVA-NeXT是基于LLaVA-1.5的改进版多模态AI模型。通过增加输入图像分辨率和优化视觉指令调优数据集,该模型显著提升了OCR和常识推理能力。它结合了预训练的大型语言模型和视觉编码器,适用于图像描述、视觉问答和多模态聊天机器人等任务。LLaVA-NeXT支持动态高分辨率处理,并采用多样化、高质量的数据混合方法,从而提供更精确和全面的图像理解。
vit_base_patch16_384.augreg_in21k_ft_in1k - Vision Transformer用于图像分类和特征提取的先进模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
此Vision Transformer模型专注于图像分类和特征提取任务。经ImageNet-21k预训练和ImageNet-1k微调,采用先进的数据增强和正则化方法。支持384x384像素输入,拥有8690万参数。不仅可进行图像分类,还能生成图像嵌入。源自Google Research,经Ross Wightman移植到PyTorch,现已成为timm库的重要组成部分。
vit-base-patch32-224-in21k - Vision Transformer模型在2100万图像数据集上预训练
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于transformer架构的视觉模型,在ImageNet-21k数据集上预训练。该模型将图像转换为固定大小的patch序列,通过线性嵌入和位置编码输入transformer编码器。ViT可应用于图像分类等多种视觉任务,只需在预训练编码器上添加任务特定层。模型在224x224分辨率下训练,批量大小为4096,在多项图像分类基准测试中展现出优秀性能。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
siglip-base-patch16-256 - 改进CLIP的多模态预训练模型SigLIP
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一个基于CLIP改进的多模态预训练模型。它使用Sigmoid损失函数,在WebLI数据集上以256x256分辨率训练。相比CLIP,SigLIP在小批量和大规模批处理中都表现更好,适用于零样本图像分类和图像-文本检索任务。模型在多个基准测试中超越了CLIP,为图像-文本预训练领域带来了新进展。
HAT - 激活更多像素的图像超分辨率转换器
GithubHATTransformer图像超分辨率开源项目深度学习计算机视觉
HAT是一个开源的图像超分辨率项目,采用混合注意力转换器架构。它在Set5、Urban100等数据集上达到了最先进水平,参数量为20.8M。HAT还提供了小型模型版本和用于真实世界超分辨率的GAN模型,能够处理各种图像重建任务。
RGT - 递归泛化Transformer模型实现高效图像超分辨率
GithubRGTTransformer全局上下文图像超分辨率开源项目自注意力机制
RGT项目提出递归泛化Transformer模型,通过创新的自注意力机制高效捕获图像全局信息。该模型结合局部和全局特征,在图像超分辨率任务中实现了优异性能,为高质量图像重建提供新思路。实验结果显示RGT在多个评估指标上超越了现有先进方法。
Upscale-A-Video - 基于扩散模型的时序一致视频超分辨率技术
AI视频处理GithubUpscale-A-VideoYouHQ数据集开源项目扩散模型视频超分辨率
Upscale-A-Video是一个视频超分辨率项目,采用扩散模型技术处理低分辨率视频和文本提示输入。该项目重点解决真实世界视频的时序一致性问题,并发布了YouHQ数据集用于模型训练和评估。Upscale-A-Video旨在提高视频分辨率的同时保持帧间连贯性。
PixArt-Sigma-XL-2-1024-MS - 基于Transformer的高分辨率图像生成模型
AI绘图GithubHuggingfacePixArt-Σ图像生成开源项目文本转图像模型深度学习
PixArt-Sigma-XL-2-1024-MS是一款基于纯Transformer架构的潜在扩散模型,能够直接从文本生成高达4K分辨率的图像。该模型采用T5文本编码器和VAE潜在特征编码器,适用于艺术创作、设计和教育研究。尽管在生成照片级真实感和复杂构图方面仍有提升空间,但它为文本到图像生成领域带来了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号