Project Icon

Awesome-Remote-Sensing-Foundation-Models

遥感基础模型论文代码数据集综合资源库

该项目汇集遥感基础模型相关论文、数据集、基准测试、代码和预训练权重。内容涵盖视觉、视觉-语言、生成式、视觉-位置、视觉-音频等多类型遥感基础模型,以及特定任务模型和遥感智能体。另外还包含大规模预训练数据集等资源,为遥感领域研究和开发提供全面支持。

Maintenance Awesome GitHub watchers GitHub stars GitHub forks

Awesome Remote Sensing Foundation Models

:star2:A collection of papers, datasets, benchmarks, code, and pre-trained weights for Remote Sensing Foundation Models (RSFMs).

📢 Latest Updates

:fire::fire::fire: Last Updated on 2024.08.08 :fire::fire::fire:

  • 2024.8.08: Update a survey paper.
  • 2024.8.06: Update MA3E.
  • 2024.8.01: Update OmniSat and MM-VSF.

Table of Contents

Remote Sensing Vision Foundation Models

AbbreviationTitlePublicationPaperCode & Weights
GeoKRGeographical Knowledge-Driven Representation Learning for Remote Sensing ImagesTGRS2021GeoKRlink
-Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview CodingCVPRW2021Paperlink
GASSLGeography-Aware Self-Supervised LearningICCV2021GASSLlink
SeCoSeasonal Contrast: Unsupervised Pre-Training From Uncurated Remote Sensing DataICCV2021SeColink
DINO-MMSelf-supervised Vision Transformers for Joint SAR-optical Representation LearningIGARSS2022DINO-MMlink
SatMAESatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite ImageryNeurIPS2022SatMAElink
RS-BYOLSelf-Supervised Learning for Invariant Representations From Multi-Spectral and SAR ImagesJSTARS2022RS-BYOLnull
GeCoGeographical Supervision Correction for Remote Sensing Representation LearningTGRS2022GeConull
RingMoRingMo: A remote sensing foundation model with masked image modelingTGRS2022RingMoCode
RVSAAdvancing plain vision transformer toward remote sensing foundation modelTGRS2022RVSAlink
RSPAn Empirical Study of Remote Sensing PretrainingTGRS2022RSPlink
MATTERSelf-Supervised Material and Texture Representation Learning for Remote Sensing TasksCVPR2022MATTERnull
CSPTConsecutive Pre-Training: A Knowledge Transfer Learning Strategy with Relevant Unlabeled Data for Remote Sensing DomainRS2022CSPTlink
-Self-supervised Vision Transformers for Land-cover Segmentation and ClassificationCVPRW2022Paperlink
BFMA billion-scale foundation model for remote sensing imagesArxiv2023BFMnull
TOVTOV: The original vision model for optical remote sensing image understanding via self-supervised learningJSTARS2023TOVlink
CMIDCMID: A Unified Self-Supervised Learning Framework for Remote Sensing Image UnderstandingTGRS2023CMIDlink
RingMo-SenseRingMo-Sense: Remote Sensing Foundation Model for Spatiotemporal Prediction via Spatiotemporal Evolution DisentanglingTGRS2023RingMo-Sensenull
IaI-SimCLRMulti-Modal Multi-Objective Contrastive Learning for Sentinel-1/2 ImageryCVPRW2023IaI-SimCLRnull
CACoChange-Aware Sampling and Contrastive Learning for Satellite ImagesCVPR2023CAColink
SatLasSatlasPretrain: A Large-Scale Dataset for Remote Sensing Image UnderstandingICCV2023SatLaslink
GFMTowards Geospatial Foundation Models via Continual PretrainingICCV2023GFMlink
Scale-MAEScale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation LearningICCV2023Scale-MAElink
DINO-MCDINO-MC: Self-supervised Contrastive Learning for Remote Sensing Imagery with Multi-sized Local CropsArxiv2023DINO-MClink
CROMACROMA: Remote Sensing Representations with Contrastive Radar-Optical Masked AutoencodersNeurIPS2023CROMAlink
Cross-Scale MAECross-Scale MAE: A Tale of Multiscale Exploitation in Remote SensingNeurIPS2023Cross-Scale MAElink
DeCURDeCUR: decoupling common & unique representations for multimodal self-supervisionArxiv2023DeCURlink
PrestoLightweight, Pre-trained Transformers for Remote Sensing TimeseriesArxiv2023Prestolink
CtxMIMCtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image UnderstandingArxiv2023CtxMIMnull
FG-MAEFeature Guided Masked Autoencoder for Self-supervised Learning in Remote SensingArxiv2023FG-MAElink
PrithviFoundation Models for Generalist Geospatial Artificial IntelligenceArxiv2023Prithvilink
RingMo-liteRingMo-lite: A Remote Sensing Multi-task Lightweight Network with CNN-Transformer Hybrid FrameworkArxiv2023RingMo-litenull
-A Self-Supervised Cross-Modal Remote Sensing Foundation Model with Multi-Domain Representation and Cross-Domain FusionIGARSS2023Papernull
EarthPTEarthPT: a foundation model for Earth ObservationNeurIPS2023 CCAI workshopEarthPTlink
USatUSat: A Unified Self-Supervised Encoder for Multi-Sensor Satellite ImageryArxiv2023USatlink
FoMo-BenchFoMo-Bench: a multi-modal, multi-scale and multi-task Forest Monitoring Benchmark for remote sensing foundation modelsArxiv2023FoMo-Benchlink
AIEarthAnalytical Insight of Earth: A Cloud-Platform of Intelligent Computing for Geospatial Big DataArxiv2023AIEarthlink
-Self-Supervised Learning for SAR ATR with a Knowledge-Guided Predictive ArchitectureArxiv2023Paperlink
ClayClay Foundation Model-nulllink
HydroHydro--A Foundation Model for Water in Satellite Imagery-nulllink
U-BARNSelf-Supervised Spatio-Temporal Representation Learning of Satellite Image Time SeriesJSTARS2024Paperlink
GeRSPGeneric Knowledge Boosted Pre-training For Remote Sensing ImagesArxiv2024GeRSPGeRSP
SwiMDiffSwiMDiff: Scene-wide Matching Contrastive Learning with Diffusion Constraint for Remote Sensing ImageArxiv2024SwiMDiffnull
OFA-NetOne for All: Toward Unified Foundation Models for Earth VisionArxiv2024OFA-Netnull
SMLFRGenerative ConvNet Foundation Model With Sparse Modeling and Low-Frequency Reconstruction for Remote Sensing Image InterpretationTGRS2024SMLFRlink
SpectralGPTSpectralGPT: Spectral Foundation ModelTPAMI2024SpectralGPTlink
S2MAES2MAE: A Spatial-Spectral Pretraining Foundation Model for Spectral Remote Sensing DataCVPR2024S2MAEnull
SatMAE++Rethinking Transformers Pre-training for Multi-Spectral Satellite ImageryCVPR2024SatMAE++link
msGFM**Bridging Remote Sensors with Multisensor Geospatial Foundation
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号