Project Icon

camembert-ner-with-dates

基于camemBERT的法语命名实体识别模型集成日期标记功能

camembert-ner-with-dates是一个增强版的法语命名实体识别模型,基于camemBERT架构,新增日期标记功能。该模型在扩展的wikiner-fr数据集(约17万句)上训练,支持识别组织、人名、地点、杂项和日期等实体。在混合测试数据上,模型达到83%的F1分数,优于传统日期解析方法。用户可通过Hugging Face平台轻松使用该模型,总体精确度、召回率和F1分数均达到0.928。

distilbert-NER - 一个精简、高效的命名实体识别模型
AI模型CoNLL-2003DistilBERTGithubHuggingfacedistilbert-NER命名实体识别开源项目模型
distilbert-NER是DistilBERT的精简版本,专为命名实体识别(NER)任务优化,能够识别地点、组织、人物等实体。相比BERT,参数更少,具备更小的模型体积和更高的速度,并在CoNLL-2003数据集上精细调优,具备良好的精度和性能。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
bert-base-arabic-camelbert-msa-ner - 现代标准阿拉伯语命名实体识别增强
CAMeLBERTCamel工具GithubHuggingface命名实体识别开源项目模型阿拉伯语模型预训练语言模型
项目基于CAMeLBERT模型提升现代标准阿拉伯语的命名实体识别性能,使用ANERcorp数据集进行微调以提高精度。可通过CAMeL Tools组件或transformers管道实现多用例应用。
ner-english-ontonotes - Flair框架英语命名实体识别模型支持18类实体
FlairGithubHuggingface命名实体识别序列标注开源项目机器学习模型自然语言处理
这是一个基于Flair框架的英语命名实体识别模型,能够识别18种实体类型,包括人名、地点和组织等。模型采用Flair embeddings和LSTM-CRF架构,在Ontonotes数据集上的F1分数为89.27%。该模型可应用于多种自然语言处理任务,并且可以通过简单的Python代码实现NER预测。
ner-german - 德语命名实体识别模型 集成Flair嵌入和LSTM-CRF技术
FlairGithubHuggingface命名实体识别序列标注开源项目德语模型自然语言处理
这是一个德语命名实体识别(NER)模型,基于Flair框架开发。模型可识别文本中的人名、地名、组织名和其他专有名词,在CoNLL-03德语修订版数据集上F1分数达87.94%。采用Flair嵌入和LSTM-CRF技术,提供高精度的德语NER功能。该模型易于使用,只需几行Python代码即可集成到NLP项目中。
tner-xlm-roberta-base-ontonotes5 - XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注
GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目标记分类模型深度学习自然语言处理
该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。
distilbert-base-multilingual-cased-ner-hrl - DistilBERT微调的10语种命名实体识别模型
DistilBERTGithubHugging FaceHuggingface命名实体识别多语言模型开源项目模型自然语言处理
这是一个基于DistilBERT微调的多语言命名实体识别模型,支持10种高资源语言。模型能够识别位置、组织和人名实体,适用于阿拉伯语、德语、英语等多种语言。它使用各语言的标准数据集训练,可通过Transformers库轻松调用。尽管在多语言NER任务中表现优秀,但在特定领域应用时可能存在局限性。
phibert-finetuned-ner - 微调生物文本识别的新模型提升精度与准确性
Adam优化器GithubHuggingfacephibert-finetuned-ner召回率开源项目模型精确度训练损失
phibert-finetuned-ner模型是通过微调dmis-lab的biobert-v1.1而实现的,旨在提高生物文本识别领域的精度和准确性。其在评估数据集上取得了精度0.9238和准确性0.9950。此模型适用于生物医学领域的命名实体识别,优化过程中采用了Adam优化器和线性学习率调度策略,在3个训练纪元中实现了低损失与高精确度。
ner-english-ontonotes-fast - 基于Flair框架的英文命名实体识别模型
FlairGithubHuggingfaceOntonotes命名实体识别开源项目模型深度学习自然语言处理
基于Flair框架开发的英文命名实体识别模型,支持识别人名、地点、组织机构等18类实体。模型在Ontonotes数据集上F1分数达到89.3%,通过Python API可快速集成使用。适用于各类英文文本的命名实体识别任务。
wikineural-multilingual-ner - 融合神经网络和知识库的多语言命名实体识别模型
GithubHuggingfaceWikiNEuRal命名实体识别多语言开源项目模型维基百科自然语言处理
WikiNEuRal是一个创新的多语言命名实体识别模型,基于自动生成的高质量数据集训练而成。该模型支持9种语言,通过结合神经网络和知识库方法,在标准NER基准测试中实现了显著突破,F1分数比现有系统提高了6个点。模型集成了Transformers库,便于快速部署和使用。尽管在百科全书类文本上表现出色,但对新闻等其他文体的泛化能力可能有限。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号