Project Icon

camembert-ner-with-dates

基于camemBERT的法语命名实体识别模型集成日期标记功能

camembert-ner-with-dates是一个增强版的法语命名实体识别模型,基于camemBERT架构,新增日期标记功能。该模型在扩展的wikiner-fr数据集(约17万句)上训练,支持识别组织、人名、地点、杂项和日期等实体。在混合测试数据上,模型达到83%的F1分数,优于传统日期解析方法。用户可通过Hugging Face平台轻松使用该模型,总体精确度、召回率和F1分数均达到0.928。

nerkor-cars-onpp-hubert - 匈牙利语命名实体识别模型实现30余类实体智能检测
GithubHuggingfaceNerKorOntoNotes命名实体识别开源项目机器学习模型语料库标注
这款匈牙利语命名实体识别模型基于SZTAKI-HLT/hubert-base-cc架构开发,具备多样化的实体识别能力。模型可识别人名、地点、组织机构等基础实体,同时支持日期、时间、货币等数值型实体,总计超过30种实体类型。通过NerKor+CARS-ONPP语料库训练,最大处理序列长度为448,能够有效完成匈牙利语文本中的实体分析工作。
bert-ner-japanese - 日本语固有表达识别,使用BERT模型实现
BERTGithubHuggingface固有表现抽取开源项目日本机器学习模型自然语言处理
本项目利用BertForTokenClassification模型,实现高效的日本语固有表达识别,可识别八种类别,如人名、法人名和地名等,以满足多样化的语言处理需求。该项目基于东北大学的日本语BERT模型和stockmarkteam的Wikipedia数据集进行训练,通过安装transformers库等,即可实现快速识别,适合应用于IT和学术研究领域的文本分析。
roberta-large-ontonotes5 - RoBERTa-large模型在OntoNotes 5数据集上的高性能命名实体识别微调版本
GithubHuggingfaceRoBERTaT-NER命名实体识别开源项目模型模型微调自然语言处理
这是roberta-large在OntoNotes 5数据集上的微调模型,专门用于命名实体识别任务。在测试集上,该模型达到了0.909的F1分数(微观)、0.905的精确度和0.912的召回率。模型采用CRF层,最大序列长度128,经过15轮训练。用户可通过tner库轻松应用此模型。它在多种实体类型识别中表现优异,尤其擅长识别地缘政治区域、组织和人物。
roberta-large-wnut2017 - Roberta-large模型在WNUT2017数据集上的实体识别能力
GithubHuggingfacetner/roberta-large-wnut2017召回率命名实体识别开源项目模型精度超参数搜索
Roberta-large在WNUT2017数据集上进行微调,F1得分为0.5375。该模型通过T-NER优化,适用于跨领域和多语言的实体识别任务,支持识别人、组织和地点等多种实体。模型通过简易代码实现实体识别,提升文本解析能力。
SpanMarkerNER - 命名实体识别的高效训练框架
BERTGithubHugging FaceNamed Entity RecognitionRoBERTaSpanMarker开源项目
SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。
Few-NERD - 大规模精细标注的命名实体识别数据集
BERTFew-NERDGithubfew-shot实体识别开源项目监督学习
Few-NERD是一个大规模精细标注的命名实体识别数据集,包含8种粗粒度类型、66种细粒度类型、188,200个句子、491,711个实体和4,601,223个标记。支持监督学习和少样本学习的三种基准任务。了解数据集的关键功能、最新更新,以及如何获取数据和运行模型的详细指南。
pytorch-bert-crf-ner - PyTorch实现的BERT-CRF韩文命名实体识别器
BERTCRFGithubKoBERTNERPytorch开源项目
该项目是一个用PyTorch实现的BERT和CRF结合的韩文命名实体识别器,适用于PyTorch v1.2及Python 3.x环境。通过实际案例和详细日志展示该识别器的使用方法及其高效的韩文命名实体识别能力。借助于SKTBrain的KoBERT模型,本项目实现了容易上手的BERT-CRF命名实体识别系统。
GLiNER - 通用轻量级命名实体识别模型
BERTGLiNERGithub命名实体识别开源项目机器学习自然语言处理
GLiNER是一个通用轻量级的命名实体识别模型,采用双向转换器编码器架构。它能识别任意类型的实体,填补了传统NER模型和大型语言模型之间的空白。GLiNER具有灵活性高、体积小、效率高的特点,适用于资源受限的场景。该模型支持自定义实体类型,可应用于信息提取、文本分类等多种自然语言处理任务。
chatbot_ner - 提供多语言支持的开源聊天机器人实体识别框架
API结构Chatbot NERConversational AIGithub印度语言支持实体识别开源项目
Chatbot NER是一个开放源代码框架,专为会话AI设计,支持在文本中进行实体识别。它目前支持英语、印地语、古吉拉特语、马拉地语、孟加拉语和泰米尔语及其混合形式。通过使用常见模式和NLP技术,能够从语言的稀疏数据中提取必要的实体。Haptik团队正在扩展其支持范围到所有印度语言及其方言。该框架的API结构易于使用,特别适合会话式AI应用,并且提供详尽的文档以便用户设置和操作。
entity-recognition-datasets - 多领域实体识别和命名实体识别任务数据集
AnnotationsDatasetsEntity RecognitionGithubNERNamed Entity Recognition开源项目
此库包含多个领域的实体识别和命名实体识别(NER)任务数据集,包括新闻、社交媒体、医学等。项目提供数据目录和转换代码,部分数据因许可证限制无法直接共享。虽然自2020年起更新较少,但仍接受通过issue或pull request添加的数据集,并支持多种语言的NER数据,如德语、西班牙语和荷兰语等。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号