Project Icon

3D-OVS

无需标注的开放词汇3D场景分割新方法

3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。

owlv2-large-patch14-ensemble - Google OWLv2模型实现零样本开放词汇目标检测
CLIPGithubHuggingfaceOWLv2开源项目模型自然语言处理计算机视觉零样本目标检测
OWLv2是Google开发的基于CLIP的零样本目标检测模型。它使用ViT-L/14架构和掩蔽自注意力Transformer分别处理图像和文本输入。通过端到端训练,OWLv2实现了开放词汇的物体分类和定位,可根据多个文本查询执行目标检测。该模型在公开数据集上训练,为计算机视觉研究提供了新的可能性。
DreamCraft3D - 层次化高保真3D内容生成技术
3D内容生成DreamCraft3DGithub几何雕刻分层结构开源项目纹理增强
DreamCraft3D是一种高保真层次化3D内容生成技术,利用2D参考图像指导几何雕刻和纹理增强,解决一致性问题。通过词汇蒸馏采样、视图依赖扩散模型和引入Bootstrapped Score Distillation,提升了几何一致性和纹理质量。该项目通过交替优化扩散先验和3D场景表示,生成逼真的3D对象,提升了3D内容生成技术水平。
Director3D - 将文本转化为真实世界相机轨迹和3D场景的AI项目
3D场景生成3D高斯溅射Director3DGithub开源项目文本生成相机轨迹
Director3D是一个基于文本生成真实世界相机轨迹和3D场景的AI项目。它结合了轨迹扩散模型、3DGS驱动的多视角潜在扩散模型和SDS++优化技术,能在20秒内生成粗略3D高斯溅射,5分钟内完成精细化。项目开源了代码和预训练模型,并提供了在线演示,为3D内容创作和计算机视觉研究提供了新的可能性。
dinov2-giant - 无监督大规模视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-giant是一款基于Vision Transformer架构的大规模视觉模型,采用DINOv2无监督学习方法训练。该模型能够从未标注的图像中提取强大的视觉特征,将图像分割为固定大小的块序列作为输入,通过Transformer编码器处理后输出图像的隐含表示。研究人员可利用此预训练模型作为基础,添加简单的线性层即可完成各种下游视觉任务的微调,为计算机视觉领域提供了强大的基础工具。
YOLO-World - 下一代实时开放词汇目标检测模型
GithubYOLO-World开放词汇开源项目目标检测零样本学习预训练模型
YOLO-World是一款创新的实时开放词汇目标检测模型。经过大规模数据集预训练,它展现出卓越的开放词汇检测和定位能力。采用'先提示后检测'范式,YOLO-World通过重参数化技术实现高效的自定义词汇推理。该模型支持零样本目标检测、分割等多种任务,并开源了在线演示、预训练权重和微调代码,为计算机视觉领域提供了实用的研究与应用工具。
Open-MAGVIT2 - 自回归视觉生成新突破 大幅提升图像分词性能
GithubOpen-MAGVIT2图像分词器大规模词表开源项目自回归模型视觉生成
Open-MAGVIT2是一个创新的自回归视觉生成项目,采用无查找技术和262144大小的码本,克服了VQGAN的局限性。该项目用PyTorch重新实现MAGVIT2分词器,在图像分词方面取得显著进展,8倍下采样时rFID达到0.39。项目致力于推动自回归视觉生成领域发展,目前处于积极开发阶段,未来计划拓展至视频生成领域。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
Mesh_Segmentation - 3D网格分割与特征提取技术发展概览
Githubmesh processing分割开源项目深度学习特征提取计算机图形学
本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。
Awesome-MVS - 多视角立体视觉算法精选资源大全
3D重建GithubMVS多视图立体视觉开源项目深度学习计算机视觉
本资源列表汇集了2017年至2024年间多视角立体视觉(MVS)算法的重要研究成果,包括基于学习和传统方法的最新进展。项目提供论文链接、代码实现和项目网页等全面资源,适合MVS领域研究者和开发者参考。内容定期更新,保持与前沿技术同步。
VLDet - 将开放词汇目标检测转化为对象语言对齐学习
GithubICLR 2023VLDet图像文本对开放词汇目标检测开源项目物体语言对齐
VLDet是一种开放词汇目标检测方法,通过学习对象与语言的对齐来直接从图像-文本对训练检测器。基于CLIP的视觉-语言预训练模型,该方法将任务构建为二分图匹配问题,在COCO和LVIS等数据集上实现了领先性能,并可轻松扩展到新目标类别。VLDet为开放词汇目标检测提供了高效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号