Project Icon

3D-OVS

无需标注的开放词汇3D场景分割新方法

3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。

dust3r - 简化几何3D视觉重建的开源项目
3D重建DUSt3RGithub开源项目深度学习计算机视觉
dust3r是一个开源的3D视觉重建项目,旨在简化几何3D视觉处理。该项目提供了一个能够从多张图像重建3D场景的模型。dust3r包含交互式演示功能、API接口和多个预训练模型,可适应不同分辨率和应用场景。项目还提供了训练指南和数据集预处理脚本,方便研究人员进行自定义开发。
GET3D - 从2D图像生成高质量3D纹理模型的新突破
3D生成模型GET3DGithub图像学习开源项目生成对抗网络纹理网格
GET3D是一种新型生成模型,可从2D图像集合中学习生成高质量3D纹理网格模型。该模型融合了可微表面建模、可微渲染和生成对抗网络技术,能直接生成具有复杂拓扑结构和丰富几何细节的3D模型。GET3D可生成包括汽车、椅子、动物、摩托车、人物和建筑在内的多种3D模型,在质量上显著超越现有方法,为大规模创建3D虚拟世界内容提供了有力工具。
gaussian-opacity-fields - 高效紧凑的无界场景表面重建技术
3D Gaussians3D重建Gaussian Opacity FieldsGithub开源项目无界场景表面重建
Gaussian Opacity Fields (GOF) 是一种新型表面重建方法,通过3D高斯分布识别几何信息。该方法使用正则化技术提高重建质量,并采用Marching Tetrahedra算法进行网格提取。GOF在无界场景中实现了高效、高质量的表面重建,为计算机视觉和图形学提供了创新解决方案。GOF方法特别适用于复杂的无界场景重建,如大规模室外环境或动态物体的表面重建。相比传统方法,GOF在处理速度和内存占用方面都有显著优势。
owlv2-base-patch16-ensemble - 基于CLIP的开放词汇目标检测模型
CLIPGithubHuggingfaceOWLv2开源项目模型目标检测计算机视觉零样本学习
OWLv2是一个基于CLIP的开放词汇目标检测模型。它使用ViT-B/16和masked self-attention Transformer分别作为图像和文本编码器,通过对比学习训练。该模型支持多文本查询的零样本目标检测,无需预定义类别。OWLv2在开放词汇目标检测任务中表现优异,为计算机视觉研究开辟了新方向。
3dv_tutorial - 开源3D视觉入门教程及OpenCV实践
3D视觉GithubOpenCV图像拼接开源项目相机标定视觉里程计
3dv_tutorial是一个开源的3D视觉入门教程,面向初学者和开发者。教程结合理论讲解和OpenCV实践,涵盖单视图、双视图和多视图几何等主题。通过简洁的示例代码和应用实例,帮助理解3D视觉基本原理并实现相关应用。教程内容包括相机标定、姿态估计、特征匹配、三维重建等,适合各类人群学习使用。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
Awesome-Text-to-3D - 前沿文本和图像到3D内容生成技术资源集
AI模型Githubtext-to-3D图像生成开源项目深度学习计算机视觉
该项目汇总了文本到3D和图像到3D的前沿生成技术。内容涵盖基于2D先验模型学习3D的方法,以及直接在3D数据上训练的生成模型。资源列表包含DreamFusion、Magic3D、Shap·E等创新方法,展现了从文本或单一图像生成高质量3D内容的最新进展。这为研究人员和开发者提供了探索和应用3D生成技术的重要参考。
CLIPSelf - 视觉Transformer自蒸馏实现开放词汇密集预测
CLIPSelfCOCOGithub密集预测开放词汇开源项目视觉Transformer
CLIPSelf项目提出创新自蒸馏方法,使视觉Transformer能进行开放词汇密集预测。该方法利用模型自身知识蒸馏,无需标注数据,提升了目标检测和实例分割等任务性能。项目开源代码和模型,提供详细训练测试说明,为计算机视觉研究提供重要资源。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
2dimageto3dmodel - 创新损失函数实现单图2D到3D模型生成
3D模型生成GANGithub单图重建开源项目损失函数点云
该项目开发了一种新型损失函数,能够直接从单张2D图像生成3D模型,无需复杂的渲染过程。项目采用条件GAN架构实现纹理映射,并优化了点云到3D网格的转换技术。在CUB鸟类和Pascal 3D+数据集上的测试显示了显著效果。此外,项目还提供预训练模型、伪真值生成和网格生成器训练等功能,为3D重建研究领域贡献了实用工具和参考方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号