Project Icon

PointMamba

用于点云分析的简单状态空间模型

该项目提出了一种名为PointMamba的模型,它通过借鉴Mamba模型在自然语言处理中的成功经验,应用在点云分析中。PointMamba采用了线性复杂度算法,在有效减少计算成本的同时,提供了卓越的全局建模能力。该模型通过空间填充曲线进行点云标记,并使用非分层结构的Mamba编码器作主干网络。综合评估表明,PointMamba在多个数据集上的表现优异,显著降低了GPU内存使用和计算量,为未来的研究提供了一个简单而有效的基准。

Official_Remote_Sensing_Mamba - 创新的大型遥感图像密集预测模型
GithubRS-Mamba变化检测密集预测开源项目语义分割遥感图像
RS-Mamba是一种专门针对大型遥感图像密集预测任务的创新模型。该模型首次将状态空间模型引入遥感领域,通过循环状态空间模型实现全局有效感受野,同时保持线性复杂度。RS-Mamba采用多方向选择性扫描技术,有效捕捉遥感图像的空间特征分布。在语义分割和变化检测任务中,RS-Mamba展现出卓越性能。项目提供开源代码和训练框架,为遥感图像分析研究提供了新的工具和方法。
mamba-370m-hf - 兼容transformers库的高效语言模型
GithubHuggingfaceMambafinetuningtransformers开源项目模型生成
项目是一种与transformers库兼容的语言模型,整合了config.json和tokenizer,以提高文本生成的速度和准确性。建议安装transformers的最新主版本,以及causal_conv_1d和mamba-ssm,以充分利用优化的cuda内核。该项目支持经典的generate API和PEFT微调,使用float32格式进行微调可获得最佳性能表现,从而提升文本生成任务的效率和质量。项目形成了一种与transformers库兼容的模型环境,通过优化策略实现高效文本生成。
MambaOut - 高效视觉模型展示简洁架构卓越性能
GithubMambaOut图像分类开源项目深度学习神经网络计算机视觉
MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。
PointLLM - 多模态大语言模型理解点云数据的突破性进展
3D点云GithubPointLLM多模态大语言模型开源项目计算机视觉
PointLLM是一个创新的多模态大语言模型,可理解物体的彩色点云数据。该模型能够感知物体类型、几何结构和外观,而不受深度模糊、遮挡或视角依赖等问题影响。项目团队收集了包含660K简单和70K复杂点云-文本指令对的数据集,并采用两阶段训练策略。为评估模型的感知和泛化能力,研究人员建立了生成式3D物体分类和3D物体描述两个基准,并使用三种评估方法进行测试。
Mamba-in-CV - Mamba模型在计算机视觉领域的最新应用概览
GithubMamba图像处理开源项目深度学习神经网络计算机视觉
本项目整理了近期Mamba模型在计算机视觉领域的研究论文,涵盖分类、检测、分割、增强等多项CV任务。内容展示了Mamba在视觉应用中的潜力,并持续更新,为研究者提供了解该领域最新进展的便捷渠道。
MambaVision - 高效且灵活的视觉骨干网络,适用于各种分辨率的图像处理
GithubHugging FaceMambaVision图像分类开源项目深度学习计算机视觉
MambaVision采用混合Mamba-Transformer架构,结合自注意力和混合块,实现了卓越的图像分类和特征提取效果。其创新的对称路径设计提升了全局上下文的建模能力,并提供多种预训练模型。MambaVision支持多种分辨率图像处理,适用于分类、检测和分割等任务。最新模型支持Hugging Face和pip包,详细信息见[官网](https://huggingface.co/collections/nvidia/mambavision-66943871a6b36c9e78b327d3)。
MambaVision-T-1K - 提高视觉模型长距离空间依赖的处理能力
GithubHuggingfaceMambaVision变换器图像分类开源项目模型特征提取计算机视觉
MambaVision是一个混合视觉模型,将Mamba与Transformer的优点结合,重新设计后的Mamba通过引入自注意力机制有效捕获长距离空间依赖。该模型在Top-1准确率和吞吐量上表现突出,创造了新的性能标准。用户可以通过简单的安装和代码导入来使用其图像分类和特征提取功能,满足多样化的应用需求,同时提供阶段性和平均池化特征输出。
Awesome-Mamba-Collection - Mamba模型在多领域应用的综合资源集
GithubMamba人工智能开源项目深度学习自然语言处理计算机视觉
Awesome-Mamba-Collection项目汇集了Mamba相关的论文、教程和视频资源。涵盖Mamba在视觉、语言、多模态等领域的应用,以及理论分析和架构改进。为研究者和开发者提供全面的Mamba参考资料,促进知识共享和社区协作。适合各级别人士学习Mamba技术。
mamba-2.8b-hf - Mamba-2.8b-hf的transformers兼容性与使用指南
GithubHuggingfaceMambafine-tuningtransformers开源项目模型生成API语言模型
Mamba-2.8b-hf是一个与transformers框架兼容的大规模语言模型。为充分发挥模型功能,需安装特定版本的transformers库,并且安装causal-conv1d和mamba-ssm以利用优化的CUDA内核实现更高效的计算。Mamba支持经典的generate方法进行文本生成,并提供定制的PEFT微调示例,建议使用float32格式进行微调,以更好地支持复杂的自然语言处理任务。
PointTransformerV3 - 先进的点云处理框架
GithubPoint Transformer V3开源项目深度学习点云处理计算机视觉语义分割
PointTransformerV3是一个创新的点云处理框架,在多个基准测试中展现出卓越性能。该项目优化了模型结构,提升了运行速度和处理能力。它适用于室内外场景的语义分割,通过多数据集预训练进一步增强了效果。研究人员可利用开源代码和预训练模型轻松复现结果或应用于自身项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号