Project Icon

Llama-3-Lumimaid-8B-v0.1-OAS-GGUF-IQ-Imatrix

Llama-3新版本增强模型转换准确性

在Llama-3-Lumimaid-8B-v0.1-OAS项目的v2版本中,模型转换方式有所改进,通过Orthogonal Activation Steering增强了模型响应灵活性。建议使用最新的KoboldCpp版本以获得最佳兼容性。此次更新还引入了Luminae数据集,结合ERP与RP数据提升了模型智能性。对于8GB VRAM GPU,推荐使用Q4_K_M-imat quant(4.89 BPW)以支持较大的上下文尺寸。

Llama-3.2-1B-Instruct-Q8_0-GGUF - 高性能指令型大语言模型的GGUF格式版本
GGUF格式GithubHuggingfaceLlama 3.2Metallama.cpp大语言模型开源项目模型
Llama-3.2-1B-Instruct模型的GGUF格式版本专为高效推理而设计。该版本保留了原始模型的指令遵循能力,同时优化了推理速度和内存使用。通过llama.cpp,用户可在多种硬件上部署此模型,实现快速、资源友好的本地AI推理。这款1B参数的轻量级模型适用于个人电脑和边缘设备,为广泛应用场景提供了便利的AI解决方案。
Meta-Llama-3-70B-Instruct-GGUF - Meta Llama 3模型的量化选项及其更新动态
GithubHuggingfaceMeta Llama 3license协议使用政策开源项目模型法律责任知识产权
Meta Llama 3项目提供多种语言模型量化选项,结合llama.cpp发布版b3259,优化模型性能及存储。项目文件涵盖多规格量化选择,适合不同应用需求,如高质量的Q8_0与Q6_K。创新如f32到f16转换提升了数据处理效果。许可协议和使用政策严格遵循法律规定,确保模型安全合规使用。
Llama-3.2-1B-Instruct-q4f32_1-MLC - 基于MLC格式的Llama指令微调对话模型支持多平台轻量级部署
GithubHuggingfaceLlamaMLC人工智能开源框架开源项目模型语言模型
基于Meta Llama-3.2-1B-Instruct转换的MLC格式模型,采用q4f32_1量化方案,针对MLC-LLM和WebLLM项目进行优化。模型提供命令行交互、REST服务部署和Python API调用功能,可灵活应用于各类场景。具备快速部署和高效对话能力,适合构建轻量级AI对话应用。
Llama-3.2-3B-GGUF - 高性能多语言型大语言模型支持8种语言
GithubHuggingfaceLlama 3.2人工智能多语言开源项目机器学习模型语言模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,适用于对话和代理任务。本项目使用llama.cpp对原模型进行量化,保留了128k上下文长度和分组查询注意力等特性。该模型在行业基准测试中表现优异,可用于聊天、知识检索、摘要等自然语言生成任务,适合商业和研究使用。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
Meta-Llama-3.1-70B-Instruct-AWQ-INT4 - Llama 3.1 70B指令模型INT4量化版 多语言对话优化
AutoAWQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta AI的Llama 3.1 70B指令模型经社区量化为INT4精度,显著降低内存需求。这一多语言模型针对对话场景优化,在行业基准测试中表现优异。支持通过Transformers、AutoAWQ、TGI和vLLM等多种方式部署使用,为开发者提供灵活选择。
Meta-Llama-3-8B-Instruct-quantized.w8a16 - 智能LLM量化技术实现50%体积压缩并完整保留性能
GithubHuggingfaceMeta-Llama-3OpenLLM人工智能开源项目权重优化模型模型量化
Meta-Llama-3-8B-Instruct模型经INT8量化优化后,参数位数从16位降至8位,减少约50%磁盘空间和GPU内存占用。在OpenLLM基准测试中,量化模型平均得分68.69,与原版68.54分相当。模型支持vLLM和transformers框架部署,适用于英语环境中商业和研究领域的AI助手应用。
llama3-8B-DarkIdol-2.2-Uncensored-1048K-GGUF - 多语言支持的llama3-8B GGUF量化模型,提供多级压缩优化
GGUFGithubHuggingfacellama3大语言模型开源项目权重压缩模型量化模型
llama3-8B GGUF量化模型支持英语、日语和中文,提供3.3GB至16.2GB多种压缩版本,适应不同硬件需求。Q4_K系列在性能和质量上表现均衡。模型基于transformers库开发,适用于角色扮演和偶像相关场景。用户可通过Hugging Face平台获取各版本及其性能对比信息。
Llama-3.1-405B - Meta开发的多语言大规模语言模型集合,支持商业和研究使用
GithubHuggingfaceLlama 3.1人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta开发的多语言大型语言模型系列,提供8B、70B和405B三种规模。模型采用优化的Transformer架构,支持128k上下文长度,使用分组查询注意力机制提升推理效率。经指令微调后,可用于多语言对话等场景,在行业基准测试中表现出色。支持8种语言,适用于商业和研究用途,如助手式聊天和自然语言生成等任务。
Llama-3.2-3B-Instruct-uncensored-GGUF - 多硬件兼容的Llama-3.2量化模型
ARM推理GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored嵌入权重开源项目数据集模型量化
LLama-3.2-3B-Instruct模型经过imatrix量化处理,确保在多种硬件配置(如ARM架构)下的高效表现。可在LM Studio中运行并支持多种格式选择,以满足不同内存和性能要求。通过huggingface-cli下载特定文件或全集成,方便易用。K-quants和I-quants提供多样化速度与性能的选择,是研究及开发人员的灵活工具。用户反馈能有效提升量化模型的适用性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号