Project Icon

Retrieval-Augmented-Visual-Question-Answering

细粒度后期交互多模态检索视觉问答系统

这个项目开发了一个基于细粒度后期交互多模态检索的视觉问答系统。系统在OK-VQA等多个基准数据集上实现了先进的检索和问答性能。它采用模块化架构,包含预训练映射网络、FLMR检索器和BLIP2读取器等关键组件。项目提供完整的代码库,支持训练和评估,并发布了预训练模型和处理后的数据集,便于研究人员进行后续研究。

LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
llava-v1.6-vicuna-7b-hf - 改进的多模态AI模型 增强图像理解和常识推理能力
GithubHuggingfaceLLaVA-Next人工智能助手图像文本生成多模态模型开源项目模型视觉语言处理
LLaVA-NeXT是基于LLaVA-1.5的改进版多模态AI模型。通过增加输入图像分辨率和优化视觉指令调优数据集,该模型显著提升了OCR和常识推理能力。它结合了预训练的大型语言模型和视觉编码器,适用于图像描述、视觉问答和多模态聊天机器人等任务。LLaVA-NeXT支持动态高分辨率处理,并采用多样化、高质量的数据混合方法,从而提供更精确和全面的图像理解。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
llava-v1.6-mistral-7b - LLaVA-v1.6:融合图像与文本理解的开源多模态AI模型
GithubHuggingfaceLLaVA图像文本多模态大语言模型开源项目指令调优模型
LLaVA-v1.6-Mistral-7B是一个基于Mistral-7B-Instruct-v0.2的开源多模态AI模型。这个模型通过大规模多模态指令数据微调,能同时处理图像和文本输入。2023年12月发布的LLaVA-v1.6-Mistral-7B主要应用于多模态模型和AI对话系统研究。该模型在12个评估基准上表现优异,涵盖5个学术视觉问答任务和7个针对指令理解的最新多模态模型基准。
xlm-roberta-large-squad2 - XLM-RoBERTa大型模型在多语言环境中的高效问答表现
GithubHaystackHuggingfacexlm-roberta-large多语种开源项目机器学习模型问答
XLM-RoBERTa大型模型经过SQuAD 2.0训练,支持多语言提取式问答。结合Haystack和Transformers框架,适用于大规模文档问答。模型评估显示其精准度和F1分数较高,尤其在无答案场景中表现突出,且支持FARM和Transformers间灵活切换。
LAVIS - 多任务语言与视觉模型的统一接口和便捷数据下载工具
BLIPGithubLAVISSalesforceX-InstructBLIPlanguage-vision开源项目
LAVIS是一款用于语言与视觉智能研究的Python库,提供统一接口,支持图像文本预训练、检索和视觉问答等10多种任务,并包含20多个数据集和30多个预训练模型。其模块化设计和自动下载工具简化了数据准备和模型训练,是开发多模态应用的理想选择。
MiniCPM-Llama3-V-2_5-int4 - 轻量级视觉问答模型实现实时图像对话
GPU内存优化GithubHuggingfaceMiniCPM-Llama3-V图像识别开源项目模型模型量化深度学习
MiniCPM-Llama3-V-2_5-int4通过int4量化技术实现低内存视觉问答功能,仅需9GB显存即可运行。基于Hugging Face框架开发,支持实时图像对话和流式输出,为视觉AI应用提供高效且资源友好的解决方案。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
KG-MM-Survey - 知识图谱与多模态学习融合研究综述
Github多模态学习开源项目深度学习知识图谱知识融合视觉问答
本项目汇总了知识图谱与多模态学习融合研究的相关论文,主要包括知识图谱驱动的多模态学习(KG4MM)和多模态知识图谱(MM4KG)两个方向。KG4MM探讨知识图谱对多模态任务的支持,MM4KG研究多模态技术在知识图谱领域的应用。项目覆盖理解推理、分类、生成、检索等多种任务,提供了详细的文献列表和资源。这是一份系统全面的知识图谱与多模态学习交叉领域研究综述。
llama3-llava-next-8b - 基于Llama 3的开源多模态视觉语言AI模型
GithubHuggingfaceLLaVA人工智能多模态模型开源项目机器学习模型深度学习
LLaVA-NeXT-8b是基于Meta-Llama-3-8B-Instruct的开源多模态模型,通过558K图文对和超过700K多模态指令数据训练而成。该模型集成视觉理解与文本生成能力,支持图像描述、视觉问答等任务。模型采用高效的分布式训练方法,训练时间约15-20小时。目前仅供学术研究使用,商业应用受限。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号