Project Icon

Retrieval-Augmented-Visual-Question-Answering

细粒度后期交互多模态检索视觉问答系统

这个项目开发了一个基于细粒度后期交互多模态检索的视觉问答系统。系统在OK-VQA等多个基准数据集上实现了先进的检索和问答性能。它采用模块化架构,包含预训练映射网络、FLMR检索器和BLIP2读取器等关键组件。项目提供完整的代码库,支持训练和评估,并发布了预训练模型和处理后的数据集,便于研究人员进行后续研究。

Llama-3-VILA1.5-8B - 视觉语言模型支持多图像推理和边缘计算
GithubHuggingfaceVILA图文理解多模态大模型开源项目模型视觉语言模型边缘计算
Llama-3-VILA1.5-8B是一款基于大规模交错图像-文本数据预训练的视觉语言模型。该模型具备多图像推理、情境学习和视觉思维链等功能,可部署于边缘设备。在12个基准测试中,包括5个学术视觉问答和7个指令跟随测试,Llama-3-VILA1.5-8B展现了优秀性能。这一模型为研究人员和AI爱好者提供了进行大型多模态模型和聊天机器人研究的有力工具。
VideoGPT-plus - 双编码器融合提升视频理解能力
GithubVideoGPT+人工智能多模态模型开源项目视频对话视频理解
VideoGPT+是一个创新的视频对话模型,通过集成图像和视频编码器,实现了更精细的空间理解和全局时间上下文分析。模型采用自适应池化技术处理双编码器特征,大幅提升了视频基准测试性能。项目同时推出VCG+ 112K数据集和VCGBench-Diverse基准,为视频对话任务提供全面评估。VideoGPT+在空间理解、推理和视频问答等多项任务中表现优异。
Awesome-Multimodal-Large-Language-Models - 多模态大语言模型研究资源与最新进展汇总
Github多模态大语言模型开源项目指令微调模型评估视觉语言模型视频理解
该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。
layoutlm-document-qa - LayoutLM文档智能问答模型
GithubHuggingfaceLayoutLM图像识别开源项目文档问答模型自然语言处理视觉问答
LayoutLM文档智能问答模型是一个经过SQuAD2.0和DocVQA数据集微调的多模态模型。它能够准确回答发票、合同等各类文档图像中的问题,支持简单的Python代码调用。该模型为文档信息提取和理解提供了高效便捷的解决方案,适用于多种文档处理场景。
RLHF-V - 通过细粒度反馈优化多模态大语言模型
GithubRLHF-V人类反馈多模态大语言模型幻觉减少开源项目行为对齐
RLHF-V框架通过细粒度的人类纠正反馈来优化多模态大语言模型的行为。该项目收集高效的纠正反馈数据,让标注者修正模型回答中的幻觉片段。实验表明,仅需1小时训练即可将基础模型的幻觉率降低34.8%。RLHF-V在Muffin模型上的验证展示了显著的性能提升,有效提高了模型的可信度。
Llama-3.2-90B-Vision-Instruct-FP8-dynamic - 基于Meta-Llama架构的FP8量化多语言视觉对话模型
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型模型量化视觉语言模型
这是一个基于Meta-Llama-3.2架构开发的视觉语言模型,包含900亿参数。通过FP8量化技术优化,将模型存储空间和GPU内存需求降低约50%。模型支持图像理解和多语言文本生成,主要应用于智能对话系统。借助vLLM后端可实现高效部署和OpenAI兼容服务。
VideoLLaMA2-7B - 多模态大语言模型在视频时空建模和音频理解上的应用
GithubHuggingfaceVideoLLaMA 2多模态大语言模型开源项目模型模型推理空间-时间建模视频问答
VideoLLaMA2-7B 项目聚焦于视频时空的建模与音频理解,利用先进的视觉和语音编码技术提升视频内容分析能力。项目支持视频聊天和多选视频问答,提供训练与推理代码,适用于多种场景需求,并开放模型权重及技术报告以支持研究与开发。
Video-LLaVA - 统一视觉表示学习的新方法 增强跨模态交互能力
GithubVideo-LLaVA图像理解多模态开源项目视觉语言模型视频理解
Video-LLaVA项目提出了一种新的对齐方法,实现图像和视频统一视觉表示的学习。该模型在无图像-视频配对数据的情况下,展现出色的跨模态交互能力,同时提升图像和视频理解性能。研究显示多模态学习的互补性明显改善了模型在各类视觉任务上的表现,为视觉-语言模型开发提供新思路。
flava-full - FLAVA模型的零样本图像和文本检索能力
FLAVAGithubHuggingface图像分类多模态开源项目模型模型限制自然语言理解
FLAVA模型基于70M图像文本对实现多模态统一架构,在计算机视觉和自然语言理解任务中展示了强大性能。该模型不依赖特定模态,与CLIP相似,可执行零样本图像分类与检索,非常适用于AI研究者探索其在多领域预训练中的应用及局限性。
Llama3-ChatQA-1.5-8B - 强化对话问答和检索增强生成的高性能AI模型
GithubHuggingfaceLlama3-ChatQA-1.5人工智能开源项目检索增强生成模型自然语言处理问答系统
基于Llama-3开发的大语言模型,专注于优化对话式问答和检索增强生成能力。模型提供8B和70B两个版本,采用改进的训练方案,增强了表格理解和算术计算能力。在ChatRAG Bench评测中,模型在多个数据集上表现优异,尤其擅长处理上下文对话和文档检索。支持完整文档输入和分块检索两种使用方式,适用于多种对话问答场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号