Project Icon

MAPE-PPI

基于微环境感知的蛋白质相互作用预测新方法

MAPE-PPI项目开发了一种基于微环境感知蛋白质嵌入的方法,用于预测蛋白质-蛋白质相互作用。该方法在多个数据集上进行了测试,显示出良好的性能。项目提供预训练模型和使用指南,涵盖环境设置、数据处理和模型训练等内容,便于研究人员复现和拓展。这一新方法为蛋白质相互作用预测研究提供了创新思路。

PERSIA - 突破百万亿参数的推荐模型训练框架
GithubPERSIA大规模训练并行计算开源项目推荐系统深度学习
PERSIA代表'并行推荐训练系统与混合加速',是一个创新的开源框架,专为训练超大规模深度学习推荐模型而设计。该系统能够处理高达100万亿参数的模型,在效率和可扩展性方面表现卓越。PERSIA不仅在公共数据集上展现出优势,还在大型商业应用中得到实际验证。作为首个公开的PyTorch基础推荐训练系统,PERSIA为推荐算法的研究和应用开辟了新的可能性。
Prevess - 营养与健康建议智能API服务
AI工具API集成Prevess个性化服务健康推荐营养建议
Prevess是一个人工智能驱动的营养和健康建议API平台。它结合科研成果和用户数据,为医疗、健身和营养行业提供可扩展的个性化服务。平台API集成简便,有助于提升用户留存。Prevess的知识库涵盖5000多篇精选论文,支持定制需求,并能分析可穿戴设备、实验室检测和用户反馈等多源数据,为个人健康提供全面评估和建议。
ipex-llm - 在Intel CPU和GPU上运行大型语言模型(LLM)的高性能库
AIGithubIPEX-LLMLLM运行库PyTorch开源项目英特尔
IPEX-LLM是专为Intel CPU和GPU设计的PyTorch库,能高效运行多种大型语言模型如LLaMA2和Mistral,确保极低延迟。支持最新技术如Microsoft的GraphRAG和多模态模型,及英特尔新型NPU。提供一体化易用性并针对多GPU优化,包括实时演示和详尽的性能基准。
jepa - 先进的自监督视频表征学习方法
GithubV-JEPA开源项目特征预测自监督学习视觉表示视频处理
V-JEPA是一种创新的视频联合嵌入预测架构,专为自监督学习而设计。该方法仅通过观察VideoMix2M数据集的视频像素进行训练,不依赖预训练图像编码器、文本信息、负样本、人工标注或像素级重建。V-JEPA生成的视觉表征具有多功能性,能够在各种下游视频和图像任务中实现优异性能,无需对模型参数进行微调。其特征预测展现出良好的时空一致性,并可通过条件扩散模型转化为可解释的像素表示。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
DNABERT_2 - 多物种基因组理解基础模型
DNABERT-2Github人工智能基因组开源项目深度学习生物信息学
DNABERT-2是一个针对多物种基因组理解的高效基础模型。该模型在28个GUE基准任务中表现优异,采用BPE替代k-mer标记化,ALiBi代替位置嵌入,并整合多项技术提升效率。DNABERT-2为基因组分析提供了强大工具,可用于序列分类、元素识别和功能预测等多种任务。
data-to-paper - 涵盖从原始数据到透明且可追溯的科学论文的全过程的AI研究框架
GithubLLMdata-to-paper可追溯性开源项目科研透明性
data-to-paper项目是一个完整的AI驱动研究框架,涵盖从原始数据到透明且可追溯的科学论文的全过程。该项目指导每一步科学研究,包括数据注释、假设生成、文献搜索、数据分析、结果解释和论文撰写。通过引入人类互动,确保手稿的追溯性和科学价值。本平台适用于各种研究领域,支持开放和特定目标的研究模式,并提供用户互动的GUI应用。
KoPA - 结构化信息提升大语言模型知识图谱补全能力
GithubKoPA大语言模型开源项目知识前缀适配器知识图谱补全结构化推理
KoPA项目提出知识前缀适配器,通过结构化嵌入预训练捕捉知识图谱的结构信息,并将其转化为虚拟知识标记。这种方法提高了大语言模型在知识图谱补全任务中的结构感知推理能力,为知识图谱应用的性能优化提供了新思路。这一研究成果有望在知识图谱构建、信息检索和智能问答系统等领域得到广泛应用。
DeepKE - 基于深度学习的知识图谱构建工具包
DeepKEGithub关系提取实体识别开源项目知识图谱知识抽取
DeepKE是一款支持命名实体识别、关系抽取和属性抽取的知识图谱构建工具。其多功能性使其适用于多模式、低资源和文档级的知识提取场景。用户可以通过DeepKE-LLM和OneKE模型进行大规模语言模型集成,并能快速训练监督模型。工具包提供详细的文档、在线演示和多种模型选择,包括NER、关系抽取和事件抽取。支持Linux环境及Docker镜像配置,确保高效信息抽取。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号