Project Icon

videomae-large

视频自监督学习的高效模型

VideoMAE大型模型在Kinetics-400数据集上进行自监督预训练,采用掩码自编码器方法,有效学习视频的内在表示。利用视觉Transformer架构,通过将视频划分为固定大小的图像块,结合线性嵌入和位置编码,进行深度分析和像素预测,适用于多种后续任务和特征提取,包括视频分类和处理。

SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
convnextv2_large.fcmae - 用于图像特征提取的自监督卷积模型
ConvNeXt-V2GithubHuggingfaceImageNet-1k图像分类开源项目模型特征提取自监督学习
ConvNeXt-V2是一种运用全卷积掩码自动编码器框架进行预训练的自监督特征表示模型,适用于微调和特征提取。模型适用于图像分类、特征图提取和图像嵌入,具备较高的参数和计算效率,可在ImageNet-1k等大规模数据集上展现出色表现。通过timm库加载,模型提供了处理多种图像任务的灵活性与精确度,是计算机视觉领域的重要工具。
phenaki-pytorch - PyTorch实现Phenaki长视频AI生成技术
AIGithubPhenakiPytorch开源项目机器学习视频生成
项目采用PyTorch框架,实现Phenaki视频生成技术。通过Mask GIT方法,能根据文本提示生成最长2分钟的视频。引入token critic技术以提升生成质量。提供简洁API,支持条件和无条件生成模式。包含完整训练与推理代码,适用于文本到图像和视频生成的相关研究。
cogvlm2-llama3-caption - 视频转文本方案,助力优化文本-视频模型训练
CogVLM2-CaptionGithubHuggingfacePyTorch开源项目模型视频描述视频转文本训练数据生成
CogVLM2-Llama3-Caption项目专注于将视频数据转换为文本描述,为文本-视频模型提供关键训练数据。利用先进的视频解码和文本生成技术,该工具支持精确视频转录,为包括CogVideoX在内的模型生成高质量训练素材。该模型结合了Transformer技术和灵活处理策略,可在CUDA设备上高效运行,帮助开发者高效进行视频内容分析。
VADER - 基于奖励梯度的视频生成质量优化技术
AIGithubVADER开源项目机器学习视觉处理视频生成
VADER是一种基于奖励梯度的视频生成质量优化技术。该方法无需大规模标注数据集,即可有效提高视频与文本的一致性、美观度,并生成更长时间的高质量视频。VADER兼容多个主流视频生成模型,如VideoCrafter2、Open-Sora和ModelScope,能显著提升其生成能力。项目提供了详细的安装、推理和训练指南,便于研究人员和开发者进行实验和应用。
MiraData - 长时视频数据集助力AI视频生成研究
GithubMiraData开源项目结构化标注视频数据集视频生成长视频
MiraData是一个为长视频生成任务设计的大规模数据集。其特点包括平均72秒的视频长度和详细的结构化字幕。数据集提供330K、93K、42K和9K四个版本,每个视频配有六类字幕:主要对象、背景、风格、相机运动、简短摘要和详细描述。这些特性使MiraData成为改进长序列视频处理和镜头转换建模的重要资源。
MOFA-Video - 可控图像动画图像到视频扩散模型
ECCV 2024GithubMOFA-Video图像动画开源项目混合控制生成模型
MOFA-Video项目采用稀疏到稠密运动生成和基于流的运动适配技术,能通过轨迹、关键点序列及其组合等多种控制信号将单张图像转化为动画。最新更新包括关键点面部图像动画的推理脚本和轨迹图像动画的训练代码。该项目即将亮相ECCV 2024,并提供多个演示和检查点,便于用户测试和使用。访问项目页面了解更多详情和效果展示。
convnextv2_large.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型结合FCMAE预训练架构
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型比较深度学习
ConvNeXt-V2是一个大型图像分类模型,通过FCMAE框架预训练并在ImageNet数据集上微调。模型包含1.98亿参数,Top1准确率达87.26%,可用于图像分类、特征提取和嵌入等计算机视觉任务。其224x224的标准训练分辨率和多功能性使其成为视觉处理的实用选择。
Video-LLaVA-7B-hf - 基于LLM的统一视觉模型实现图像和视频的智能处理
GithubHuggingfaceVideo-LLaVA多模态模型开源项目模型视觉识别视频分析语言模型
Video-LLaVA是一个基于Vicuna-13b的开源多模态模型,通过统一的视觉表示编码器实现图像和视频内容的并行处理。该模型采用语言对齐投影方式,无需图像-视频配对数据即可完成训练。模型支持图像和视频的混合输入,可应用于内容理解、问答和描述等视觉分析任务。
dinov2-large - 基于Vision Transformer的大规模自监督视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-large是基于Vision Transformer架构的大规模视觉模型,采用自监督学习方法训练。该模型能从海量未标注图像中学习视觉特征表示,适用于多种下游视觉任务。它将图像转换为固定大小的patch序列输入Transformer编码器,提取高质量特征。研究人员可直接使用其预训练编码器进行特征提取,或针对特定任务进行微调,体现了模型的通用性和灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号