Project Icon

SAN

轻量高效的开放词汇语义分割框架

Side Adapter Network (SAN)是一个开放词汇语义分割框架,将分割任务建模为区域识别问题。它在冻结的CLIP模型旁附加轻量级侧网络,实现高效准确的分割。SAN在多个语义分割基准测试中表现优异,具有更少的可训练参数和更快的推理速度。这一方法为开放词汇语义分割领域提供了新的解决思路。

sam2-hiera-tiny - 提供图像和视频分割功能的开放源码基础模型
GithubHuggingfaceSAM 2图像分割开源项目模型深度学习视觉分割视频分割
SAM 2模型提供图像和视频的可提示视觉分割功能,开源代码库支持图像和视频预测。通过提示实现精准的掩码生成及传播,在高效推理中表现出色。该项目适合视觉识别与处理领域的研究者和开发者进行应用。
LISA - 通过大型语言模型进行推理分割的技术
GithubLISA分割掩码多模态大语言模型开源项目推理分割
LISA凭借其多模态大型语言模型,开创推理分割任务,能够将复杂文本问题转化为精准的图像分割结果。该项目不仅包含超千个图像指令对、综合推理及世界知识评估,还展示出在无需推理的数据集训练下的强大零样本能力。推理训练图片指令对的引入进一步强化了其性能。详情请参阅相关论文。
PFENet - 优化少样本分割的先验引导特征增强网络
GithubPFENet少样本分割开源项目深度学习特征提取语义分割
PFENet作为少样本分割网络的代表作,利用先验引导特征增强技术优化分割效果。在PASCAL-5i和COCO等主流数据集上,PFENet展现出卓越性能。该开源项目包含完整实现代码、预训练模型和详细文档,为计算机视觉研究提供了宝贵资源。
SAT - 突破性医学图像分割模型,支持多模态多区域文本提示
GithubSAT医学图像分割多模态开源项目文本提示通用分割模型
SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。
SOLO - 无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能
GithubResNet-101SOLOSOLOv2开源项目目标分割高质量遮罩预测
SOLO项目实现了SOLO和SOLOv2两种完全无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能。该项目基于mmdetection,支持多GPU和单GPU训练,并提供多种预训练模型下载,包括轻量级模型。对于研究人员来说,这些工具显著提高了分割精度和训练速度,适用于各种应用场景。
SONAR - 先进的多语言多模态句子表示模型
GithubSONAR句子嵌入多模态多语言开源项目机器翻译
SONAR是Meta AI推出的开源多语言多模态句子表示模型。它支持200种语言的文本处理和37种语言的语音处理,在多语言相似性搜索任务中性能优异。SONAR可用于文本和语音嵌入、文本重构、跨语言翻译等多种自然语言处理任务,为多语言多模态AI应用提供了强大的基础。
SOLC - 基于深度学习的SAR和光学遥感影像土地利用分类框架
GithubPyTorchSAR图像分类开源项目深度学习遥感
SOLC是一个开源的遥感图像语义分割框架,专注于SAR和光学影像的土地利用分类。该项目基于PyTorch实现了多种深度学习模型,包括DeepLabv3+、UNet和SegNet等。其中SOLC V7模型采用了双流DeepLabv3+架构,并融合SAGate和ERFB模块,在WHU-OPT-SAR数据集上实现了最佳性能。项目提供了完整的源代码、预训练权重和使用说明,为遥感图像分析研究提供了实用工具。
awesome-adapter-resources - 大型预训练神经网络适配器方法工具和论文资源库
AdapterGithubNLPPEFT参数高效开源项目迁移学习
本项目汇集了大型预训练神经网络适配器方法的关键工具和论文。涵盖自然语言处理、计算机视觉和音频处理领域的适配器技术,包括方法、组合技术、分析评估和应用。提供框架工具链接和详细调查研究,是研究人员和从业者的重要参考资源。
upernet-convnext-small - 高效语义分割框架融合ConvNeXt技术
ConvNeXtGithubHuggingfaceUperNet图像分割开源项目模型计算机视觉语义分割
UperNet是一种结合ConvNeXt骨干网络的语义分割框架,融合了特征金字塔网络(FPN)和金字塔池化模块(PPM)。它能为每个像素生成语义标签,适用于场景理解和图像分割等计算机视觉任务。该模型提供多种预训练版本,可根据具体需求应用于不同场景。UperNet的设计旨在提高语义分割的准确性和效率,为研究人员和开发者提供了强大的图像分析工具。
Segment-Any-Anomaly - 基于混合提示正则化的零样本异常分割方法
GithubSAA+图像处理开源项目异常分割计算机视觉零样本学习
Segment-Any-Anomaly项目提出了一种基于混合提示正则化的零样本异常分割方法。该方法通过适配Grounding DINO和Segment Anything等基础模型,实现了对多种异常检测数据集的高效分割。项目在MVTec-AD、VisA等公开数据集上展现出优秀性能,并在VAND工作坊竞赛中取得佳绩。仓库包含完整代码实现、演示和使用说明,便于研究者复现和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号