Project Icon

SAN

轻量高效的开放词汇语义分割框架

Side Adapter Network (SAN)是一个开放词汇语义分割框架,将分割任务建模为区域识别问题。它在冻结的CLIP模型旁附加轻量级侧网络,实现高效准确的分割。SAN在多个语义分割基准测试中表现优异,具有更少的可训练参数和更快的推理速度。这一方法为开放词汇语义分割领域提供了新的解决思路。

sam2.1-hiera-large - Meta开源的新一代图像视频智能分割模型
GithubHuggingfaceSAM2图像分割开源项目机器学习模型视频分割计算机视觉
sam2.1-hiera-large是Meta AI推出的SAM 2项目的核心模型,专注于图像和视频的智能分割任务。模型支持图像和视频预测功能,可通过Python接口快速集成。基于提示式交互,模型能实现自动生成分割掩码,在需要精确物体分割的计算机视觉应用中具有广泛应用价值。
RepViT - 移动设备上的高效实时视觉模型
GithubRepViT-SAMSAM模型实时分割开源项目移动设备轻量级CNN
RepViT是一个轻量级CNN模型家族,整合了Vision Transformer的架构设计,在移动设备上实现了80%以上的ImageNet准确率,延迟仅1毫秒。RepViT-SAM将RepViT应用于SAM模型,显著降低了计算需求,实现了移动设备上的实时任意目标分割。这两个模型在图像分类、目标检测和语义分割等视觉任务中均表现出色,兼具高性能和高效率。
LLaMA-Adapter - 轻量级适配方法高效微调大语言模型
GithubLLaMA-Adapter多模态大语言模型开源项目微调指令跟随
LLaMA-Adapter是一种高效的大语言模型微调方法。通过在LLaMA模型中插入适配器,仅引入120万个可学习参数,1小时内即可将LLaMA转化为指令跟随模型。该方法提出零初始化注意力机制,稳定早期训练。LLaMA-Adapter支持多模态输入,拓展应用场景。与全量微调相比,在参数量和训练时间上具显著优势,同时保持相当性能。
HRDA - 突破性多分辨率域适应语义分割方法
GithubHRDA域适应多尺度开源项目语义分割高分辨率
HRDA是一种创新的多分辨率训练方法,用于无监督域适应的语义分割。它结合高分辨率裁剪保留细节和低分辨率裁剪捕获长程上下文,同时控制GPU内存占用。HRDA在多个基准测试中显著超越现有方法,并可扩展至域泛化。这种方法为自动驾驶等实际应用中的域适应问题提供新思路,推动了计算机视觉技术在复杂场景下的应用。
MetaCLIP - CLIP模型数据处理优化工具
CLIPGithubMetaCLIP图像文本对开源项目数据清洗预训练模型
MetaCLIP是一个改进CLIP模型数据处理的开源项目。它提出了一种新的数据筛选算法,无需依赖现有模型即可从头整理数据。该项目强调数据质量,提供了可扩展到CommonCrawl全数据集的方法。MetaCLIP公开训练数据分布,提高了透明度,并为CLIP模型提供标准化的实验设置,便于控制实验和公平比较。
mmsegmentation - 高效的PyTorch语义分割工具箱与新特性介绍
GithubMMSegmentationOpenMMLabPyTorchv1.0.0开源项目语义分割
MMSegmentation是基于PyTorch的开源语义分割框架,提供模块化设计和统一基准,支持多种算法。最新v1.2.0版本新增开放词汇语义分割和单目深度估计功能,提升训练效率和快速部署体验。
clip-as-service - 一种低延迟、高可扩展性的用于嵌入图像和文本的服务
CLIP-as-serviceGithub图像嵌入多模态解决方案开源项目文本嵌入神经搜索
CLIP-as-service是一款以神经网络为基础,专注于提供高效且易于扩展的图像和文本嵌入服务。其面向大规模数据处理,支持多种并发请求,适合集成到各种神经网络搜索框架中。这个服务通过简洁的API和自动负载均衡,让用户无需深厚技术背景即可便捷使用。同时,该服务能与Jina和DocArray等神经搜索生态系统紧密结合,助力开发者快速部署多模态和跨模态应用。
sat-12l-sm - 先进的多语言文本句子分割模型
GithubHuggingfacewtpsplit句子分割多语言模型开源项目模型深度学习自然语言处理
sat-12l-sm是一个基于12层Transformer架构的句子分割模型,支持80种语言的文本分割。作为wtpsplit库的核心组件,它采用'Segment any Text'技术,为自然语言处理提供基础支持。该模型可用于提高文本分析和处理的准确性,适用于研究和开发领域。
ansj_seg - 精准高效的中文分词工具
AnsjCRFGithubHMM中文分词开源项目自然语言处理
Ansj中文分词是一个基于n-Gram、CRF和HMM的Java实现,具有每秒约200万字的高效分词能力,准确率超过96%。其功能包括中文分词、姓名识别、自定义词典、关键字提取、自动摘要和关键词标记,适用于对分词效果要求高的自然语言处理项目。
mformer-sanctity - 开源深度学习NLP开发框架
GithubHuggingfaceMIT协议transformers开源协议开源项目模型编程语言软件许可
这是一个基于MIT许可证的开源自然语言处理项目,使用transformers技术进行开发。该框架旨在为NLP应用开发提供支持,集成了相关工具和技术组件。框架采用模块化设计,便于开发者进行自然语言处理相关功能的开发和部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号