Project Icon

SAN

轻量高效的开放词汇语义分割框架

Side Adapter Network (SAN)是一个开放词汇语义分割框架,将分割任务建模为区域识别问题。它在冻结的CLIP模型旁附加轻量级侧网络,实现高效准确的分割。SAN在多个语义分割基准测试中表现优异,具有更少的可训练参数和更快的推理速度。这一方法为开放词汇语义分割领域提供了新的解决思路。

res-adapter - 扩散模型的无缝分辨率适配器
AI绘图GithubResAdapter分辨率适配图像生成开源项目扩散模型
ResAdapter是一款轻量级分辨率适配器,可集成至各类扩散模型中实现任意分辨率图像生成。无需额外训练和推理,ResAdapter通过少量参数(SD1.5为0.9M, SDXL为0.5M)支持广泛的分辨率范围。项目提供使用指南、预训练权重及与多种模型的集成示例,展示了其在文本生成图像和图像编辑等任务中的应用效果。
ISBNet - 高效准确的3D点云实例分割网络实现先进场景理解
3D点云GithubISBNet实例分割开源项目深度学习计算机视觉
ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
LLM-Adapters - LLM模型参数微调适配器集成框架
GPT-JGithubHuggingFaceLLM-AdaptersLoRAPEFT开源项目
LLM-Adapters 是一个集成了多种适配器的框架,用于实现大语言模型的参数高效微调。支持 LLaMa、OPT、BLOOM 和 GPT-J 等开源大语言模型,以及 Bottleneck、Parallel 和 LoRA 等适配器。这个框架为研究人员和开发者提供了强大的工具,可应用于各种任务的适配器方法。最新更新包括 commonsense170k 数据集,LLaMA-13B-Parallel 模型在多个常识基准测试中表现优异,超越了 ChatGPT。
segformer-b1-finetuned-cityscapes-1024-1024 - SegFormer模型在语义分割中的高效应用
CityscapesGithubHugging FaceHuggingfaceSegFormerTransformer图像分割开源项目模型
SegFormer模型在CityScapes数据集上进行了微调,使用Transformer结构和轻量级MLP解码头实现高效的图像语义分割。适用于图像分割领域的研究者和开发者,可通过Python代码轻松使用。该模型支持高分辨率图像处理,展示了Transformer的潜力。
sat-3l-sm - 基于Transformer的多语言句子分割模型
GithubHuggingfaceTransformerwtpsplit分词多语言开源项目模型自然语言处理
sat-3l-sm是一个基于3层Transformer架构的句子分割模型,支持80种语言的文本分段。作为wtpsplit库的核心组件,该模型采用MIT许可证开源。sat-3l-sm源于'Segment any Text'研究,为自然语言处理提供准确的句子边界检测功能。
Segment-Any-Point-Cloud - 视觉基础模型驱动的通用点云序列分割框架
GithubSeal开源项目点云分割神经网络自监督学习计算机视觉
Seal是一种自监督学习框架,通过利用视觉基础模型的知识来分割多样化的点云序列。该框架在表示学习阶段强调空间和时间一致性,实现了高效的跨模态知识迁移。Seal无需依赖2D或3D标注,直接从视觉模型中提取知识,展现出优秀的可扩展性、一致性和泛化能力。它可应用于各类点云数据集,包括真实与合成、高低分辨率、大小规模以及干净和受损数据。
oneformer_ade20k_swin_tiny - 通过单一模型实现多任务图像分割的统一框架
GithubHuggingfaceOneFormer图像分割实例分割开源项目模型深度学习语义分割
OneFormer通过单一架构实现语义、实例和全景分割的统一处理。基于ADE20k数据集训练并采用Swin主干网络,这个紧凑型模型仅需一次训练即可完成多种图像分割任务。其独特的任务令牌机制实现了训练引导和推理动态化,为图像分割领域提供了高效的解决方案。
mit-b4 - 使用SegFormer预训练模型提升语义分割效率
GithubHugging FaceHuggingfaceImageNetSegFormerTransformer开源项目模型语义分割
此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。
DAFormer - 提升域适应语义分割的网络架构与训练策略
DAFormerGithubTransformer域自适应语义分割开源项目网络架构语义分割
通过Transformer编码器和多级上下文感知特征融合解码器,显著提升域适应语义分割性能。DAFormer使用稀有类采样、ImageNet特征距离和学习率预热等策略,提升GTA→Cityscapes和Synthia→Cityscapes的分割效果,并扩展至域泛化领域。在多个UDA基准上,DAFormer显著超越了前沿方法,成为领域推广和不受目标图像限制的语义分割任务中新的性能标杆。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号