Project Icon

RecTools

功能丰富的推荐系统开发Python库

RecTools是一个专为推荐系统开发设计的Python库。它集成了数据处理、指标计算、多种推荐模型和模型选择框架。支持矩阵分解、最近邻和神经网络等算法,并可利用用户和物品特征。RecTools注重易用性和灵活性,有助于快速构建和部署推荐系统。

sysidentpy - 非线性系统识别和时序预测的Python工具库
GithubNARMAX模型SysIdentPy开源项目时间序列预测系统识别非线性建模
SysIdentPy是一个开源Python库,专注于NARMAX模型及其变体的系统识别。该库提供先进的模型结构选择和参数估计技术,支持多种基函数,并可与神经网络和机器学习算法集成。它为时间序列分析和动态系统建模提供了灵活易用的框架,适用于构建动态非线性模型。
DI-toolkit - 简化深度学习实验流程的开源工具集
DI-toolkitGithubPython工具包TensorBoard工具开源项目文档生成日志系统
DI-toolkit是一个开源的深度学习工具集,提供日志系统、注释文档生成和TensorBoard数据提取等功能。该工具支持多个Python版本,拥有完善的文档和测试。DI-toolkit致力于简化深度学习实验流程,为研究人员提供便利。
awesome-recommend-system-pretraining-papers - 推荐系统预训练及大型语言模型论文资源
GithubRecommend System大语言模型开源项目数据集用户表示预训练预训练模型
此资源汇总了预训练推荐系统和大型语言模型相关的论文,涵盖用户表示预训练、序列推荐、图预训练等子领域,并提供丰富的数据集和代码链接。研究人员可以通过该列表了解如何利用预训练和大型语言模型提升推荐系统性能,获得最新研究成果和实用工具。
rtdl - 表格数据深度学习的前沿研究与开源工具集
GithubRTDL开源项目模型研究深度学习神经网络表格数据
RTDL项目汇集了表格数据深度学习领域的多项前沿研究成果和开源工具包。项目涵盖TabReD基准测试、TabR近邻方法、TabDDPM扩散模型等创新技术,同时深入探讨了数值特征嵌入和预训练目标等关键问题。通过提供丰富的研究论文和实用的软件包,RTDL为表格数据深度学习的技术进步提供了重要支持,是该领域研究人员和实践者的宝贵资源。
SIGIR2020_peterrec - 基于序列行为的参数高效迁移学习推荐方法
GithubPeterRec开源项目推荐系统深度学习用户建模迁移学习
SIGIR2020_PeterRec提出了一种基于用户序列行为的参数高效迁移学习方法,用于改进推荐系统性能。该方法在冷启动等场景中表现出色。项目提供了多个大规模数据集,用于评估各类推荐模型,包括基础模型、可迁移模型、多模态模型和大语言模型。项目还包含PyTorch代码实现和详细的使用说明。
Awesome-LLM-for-RecSys - 关于大型语言模型 (LLM) 相关推荐系统主题的论文和资源的集合
ACM Transactions on Information SystemsChatGPTGithubLLM开源项目推荐系统论文更新
Awesome-LLM-for-RecSys聚焦大语言模型与推荐系统的交汇点,提供领先的研究成果与资源。该项目持续跟踪最新动态,举行定期论文评述,旨在为研究者和开发者深化对LLM在推荐系统中应用的理解提供支持。
reticulate - R与Python互操作的全面解决方案
GithubPythonRreticulate开源项目数据科学跨语言交互
reticulate是一个实现R和Python全面互操作的包。它支持在R中调用Python、导入模块、在R Markdown中使用Python代码块,以及在R会话中交互使用Python。该包能够转换R和Python对象,并支持不同版本的Python环境。通过在R会话中嵌入Python会话,reticulate实现了高性能的无缝互操作。这个工具能够显著简化同时使用R和Python的数据科学工作流程。
NeuroRA - 多模态神经数据表征分析工具箱
GithubNeuroRAPython工具箱多模态神经数据开源项目神经数据分析表征相似性分析
NeuroRA是一个开源的Python工具箱,用于多模态神经数据的表征相似性分析。它支持包括行为、EEG、MEG、fMRI在内的多种神经数据类型,提供神经模式相似性、时空模式相似性等分析功能。该工具箱还实现了跨时间RSA和基于分类的EEG解码等创新方法,为神经科学研究者提供了一个功能全面的分析平台。
BARS - 推荐系统开放基准测试项目
BARSGithub基准测试开源项目性能评估推荐系统
BARS项目致力于解决推荐系统领域缺乏统一基准测试的问题。它通过开放式基准测试提高研究可重复性和结果一致性。目前涵盖CTR预测和候选项匹配任务,未来将扩展到列表重排序和多任务推荐领域。该项目鼓励学术界和业界参与,共同推动推荐系统研究的进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号