Project Icon

TopoNet

自动驾驶场景拓扑推理的图神经网络方法

TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。

TopoNetX - 用于关系型数据分析的开源拓扑计算库
GithubTopoNetX关系数据复杂系统开源项目拓扑数据计算工具
TopoNetX是一个开源的拓扑计算库,专门用于处理和分析复杂的关系型数据。该库支持构建细胞复形、单纯复形和组合复形等拓扑结构,提供边界算子、霍奇拉普拉斯算子和高阶邻接算子的计算功能。TopoNetX与NetworkX和Gudhi兼容,能够帮助研究人员和数据科学家探索数据的拓扑特性,适用于社交网络、生物系统等复杂系统的建模与分析。
LaneGCN - 基于车道图表示的车辆运动预测方法
GithubLaneGCN开源项目自动驾驶计算机视觉车道图表示运动预测
LaneGCN是一种基于车道图表示的车辆运动预测方法。该方法利用图卷积网络处理复杂道路拓扑,提高了预测准确性。LaneGCN在Argoverse运动预测竞赛中取得第一名,显示了其在自动驾驶领域的应用潜力。项目提供了开源代码和预训练模型,便于研究人员进行复现和深入研究。
HybridNets - 实时多任务交通场景感知网络
GithubHybridNets可行驶区域分割多任务感知开源项目目标检测车道线检测
HybridNets是一个实时多任务交通场景感知网络,集成了交通对象检测、可行驶区域分割和车道线检测功能。该网络可在嵌入式系统上实时运行,在BDD100K数据集的目标检测和车道检测任务中达到了最先进水平。HybridNets平衡了实时性能和多任务准确性,为自动驾驶和高级驾驶辅助系统提供了高效的视觉感知解决方案。
GNN4Traffic - 图神经网络在交通预测中的应用与研究综述
GNN4TrafficGithub交通预测图神经网络开源项目深度学习空间时间数据
GNN4Traffic项目汇集了图神经网络在交通预测领域的最新研究成果,涵盖多种GNN模型用于交通流量、需求和人流预测。项目提供相关论文、代码资源、数据集推荐和统计分析,是探索GNN在智能交通系统应用的重要资源库。
pytorch-auto-drive - 基于 PyTorch 的分割模型和车道检测模型
GithubPyTorchPytorchAutoDrive开源项目模型部署语义分割车道检测
框架基于纯Python和PyTorch,提供从模型训练、测试到可视化和部署的全方位支持。特色包括多种主干网络、简洁易懂的代码、混合精度训练及ONNX和TensorRT的部署支持。该框架中模型训练速度快,性能优于其他实现,支持多种数据集和模型方法,为自动驾驶研究提供可靠的基准测试和高效工具。
MapTR - 在线向量化高精度地图快速构建框架
GithubMapTR人工智能开源项目模型自动驾驶高精地图
MapTR是一款高效准确的在线向量化高精度地图构建框架,可应用于自动驾驶系统的复杂场景中。该框架采用统一的置换等效建模方法,结合分层查询嵌入和双向匹配策略,提高了学习过程的稳定性,具备实时推理能力,并在nuScenes和Argoverse2数据集中表现出色。MapTR支持多种地图元素,具备良好的扩展性和灵活性。最新版本MapTRv2提升了性能和收敛速度,并引入了额外的语义中心线,进一步优化下游规划需求。
PersFormer_3DLane - PersFormer基于透视变换实现精确的3D车道线检测
3D车道线检测GithubOpenLane基准PersFormerPyTorch实现开源项目透视变换
PersFormer是一种创新的3D车道线检测模型,采用基于Transformer的模块生成BEV特征并参考相机参数。模型能同时进行2D和3D车道检测,提升特征一致性与多任务学习效果。PersFormer在OpenLane和Apollo 3D Lane Synthetic数据集上的表现优异,超越了多种现有方法,并提供简便的安装与评估说明以及详细的训练和测试指南,成为3D车道检测领域的重要进展。
Cam2BEV - 深度学习实现多视角车载图像到语义分割鸟瞰图转换
Cam2BEVGithub开源项目深度学习自动驾驶语义分割鸟瞰图
该项目提出一种深度学习方法,将多个车载摄像头图像转换为语义分割鸟瞰图(BEV)。采用合成数据集训练,可良好泛化到真实场景。方法使用语义分割图像作为输入,缩小了仿真与真实数据的差距,无需手动标注。项目开源了代码、网络架构和数据集,适用于自动驾驶环境感知研究。相比传统逆透视映射,该方法在处理3D物体和遮挡区域时表现更佳。
OpenGraph - 图神经网络零样本学习的突破性研究
GithubOpenGraph图生成图神经网络大语言模型开源项目零样本学习
OpenGraph是一个创新的图基础模型,通过从大语言模型中提取零样本图泛化能力,解决了图神经网络领域的关键技术挑战。该模型引入了统一图标记器、可扩展图transformer和基于大语言模型的数据增强机制,在多种场景下展现出优异的零样本图学习性能。这项研究为图神经网络的泛化能力提升和应用场景拓展开辟了新方向。
MogaNet - 多阶门控聚合网络在计算机视觉领域的创新应用
GithubMogaNet人体姿态估计图像分类开源项目目标检测视频预测语义分割
MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号