Project Icon

InternVideo

视频基础模型助力多模态理解进展

InternVideo项目致力于开发通用视频基础模型,提升多模态视频理解能力。项目包含InternVideo和InternVideo2两个主要版本,以及大规模视频-文本数据集InternVid。InternVideo2采用生成式和判别式学习方法,在多模态视频理解任务中表现突出。项目不断更新,提供多种规模的模型和丰富的视频注释数据,为研究和开发提供有力支持。

video_features - 多模态视频特征提取框架 支持多种深度学习模型
GitHub项目Github多模态分析开源项目深度学习模型视频特征提取计算机视觉
video_features是一个开源的视频特征提取框架,支持视觉、音频和光流等多种模态。该框架集成了S3D、R(2+1)d、I3D-Net等动作识别模型,VGGish声音识别模型,以及RAFT光流提取模型。它支持多GPU和多节点并行处理,可通过命令行或Colab快速使用。输出格式灵活,适用于视频分析相关的研究和应用。
Video-ChatGPT - 创新视频对话技术开启细致视频理解新纪元
GithubVideo-ChatGPT多模态大型视觉语言模型开源项目视频理解问答系统
Video-ChatGPT是一个融合大型视觉和语言模型的视频对话系统。该项目构建了10万条视频-指令对数据集,开发了首个视频对话量化评估框架,在视频推理、创意生成、空间和时间理解等任务中表现出色。这一开源项目为视频内容理解和人机交互带来了新的发展方向。
VideoMamba - 突破性的视频理解状态空间模型
GithubVideoMamba多模态兼容性开源项目状态空间模型视频理解长期视频建模
VideoMamba是一种创新的视频理解模型,克服了现有技术的局限性。它能高效处理长视频和高分辨率内容,展现出可扩展性、短期动作识别敏感性、长期视频理解优势和多模态兼容性四大核心特点。VideoMamba为全面的视频理解任务提供了高效解决方案,推动了该领域的发展。
stable-video-diffusion-img2vid - AI模型将静态图像转换为动态短视频的创新技术
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是一种先进的AI模型,可将静态图像转化为短视频。该模型利用潜在扩散技术,生成14帧、576x1024分辨率的视频片段。在视频质量方面表现出色,主要应用于生成模型研究和安全部署等领域。尽管存在视频时长短、可能缺乏动作等限制,但该模型为图像到视频转换技术带来了新的可能性。目前仅限于研究用途,不适用于生成事实性或真实性内容。
Video-LLaVA - 统一视觉表示学习的新方法 增强跨模态交互能力
GithubVideo-LLaVA图像理解多模态开源项目视觉语言模型视频理解
Video-LLaVA项目提出了一种新的对齐方法,实现图像和视频统一视觉表示的学习。该模型在无图像-视频配对数据的情况下,展现出色的跨模态交互能力,同时提升图像和视频理解性能。研究显示多模态学习的互补性明显改善了模型在各类视觉任务上的表现,为视觉-语言模型开发提供新思路。
Qwen2-VL-72B-Instruct-GPTQ-Int8 - 改进视觉和文本处理能力的多模态模型
GithubHuggingfaceQwen2-VL多模态多语言支持开源项目模型视觉理解视频分析
本项目是一个多模态视觉语言模型,具有高效的图像理解和多语言支持。它能够处理超过20分钟的视频内容,并可整合到移动设备和机器人中进行自动化操作。通过应用动态分辨率处理和多模态旋转位置嵌入,该模型提升了视觉处理能力。此外,项目还提供了便于快速部署的工具包,助力处理各类视觉任务。
Video-LLaVA-7B-hf - 基于LLM的统一视觉模型实现图像和视频的智能处理
GithubHuggingfaceVideo-LLaVA多模态模型开源项目模型视觉识别视频分析语言模型
Video-LLaVA是一个基于Vicuna-13b的开源多模态模型,通过统一的视觉表示编码器实现图像和视频内容的并行处理。该模型采用语言对齐投影方式,无需图像-视频配对数据即可完成训练。模型支持图像和视频的混合输入,可应用于内容理解、问答和描述等视觉分析任务。
CV-VAE - 兼容预训练模型的视频生成技术
CV-VAEGithubVAE兼容性开源项目潜在空间视频生成
CV-VAE是一种视频变分自编码器,专为潜在生成视频模型设计。它与预训练图像和视频模型(如SD 2.1和SVD)兼容,用于视频重建和生成。项目提供代码实现和预训练模型权重,支持视频重建和文本到视频转换。CV-VAE为视频生成技术研究提供了新的工具和方向。
LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
HumanVid - 创新的相机控制人物图像动画技术
GithubHumanVid人像动画图像生成开源项目相机控制训练数据
HumanVid是一项致力于相机可控人物图像动画的研究项目。该项目通过优化训练数据利用,旨在实现对人物图像的精确控制和自然动画效果。HumanVid简化了图像处理流程,为研究者和开发者提供了新的工具。项目团队计划在近期发布相关数据,并将于2024年9月底开源训练和推理代码以及模型检查点,有望为计算机视觉和图形学领域带来新的研究方向。HumanVid项目致力于探索如何通过优化训练数据来实现相机可控的人物图像动画,为该领域的进步贡献力量。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号