Project Icon

InternVideo

视频基础模型助力多模态理解进展

InternVideo项目致力于开发通用视频基础模型,提升多模态视频理解能力。项目包含InternVideo和InternVideo2两个主要版本,以及大规模视频-文本数据集InternVid。InternVideo2采用生成式和判别式学习方法,在多模态视频理解任务中表现突出。项目不断更新,提供多种规模的模型和丰富的视频注释数据,为研究和开发提供有力支持。

Awesome-Video-Diffusion-Models - 视频扩散模型研究进展与开源资源综述
Github开源工具箱开源项目数据集文本到视频生成视频生成模型评估指标
本文综述了视频扩散模型领域的研究进展和开源资源。内容包括最新工具箱、基础模型、数据集和评估指标,涵盖文本到视频生成、视频编辑和理解等多个方向。文章系统梳理了该领域的关键技术和资源,为研究人员和开发者提供全面参考,有助于推动视频生成和处理技术的发展。
InternLM-XComposer - 多模态视觉语言模型实现超高分辨率理解与多场景交互
GithubInternLM-XComposer-2.5多回合多图对话多模态大语言模型开源项目网页制作高分辨率图像理解
InternLM-XComposer-2.5是一款高级多模态视觉语言模型,能处理高达96K的复杂图文背景。该模型优秀适用于超高清图像分析、多轮对话生成、网页创建等任务,并通过特殊算法优化输出质量,在多个基准测试中表现卓越。
InternVL2-4B - 先进多模态大语言模型探索视觉语言理解新高度
GithubHuggingfaceInternVL2图像理解多模态大语言模型开源项目指令微调模型
InternVL2-4B是一个多模态语言模型,集成InternViT-300M-448px视觉编码器和Phi-3-mini-128k-instruct语言模型。该模型在文档理解、图表问答和场景文字识别等任务中表现优异,超越多数开源方案。支持8K上下文窗口,可处理长文本、多图像和视频输入,在多模态能力评测中展现与商业模型相当的性能。
VideoBooth - 基于图像提示的AI视频生成新突破
GithubVideoBooth人工智能图像提示开源项目扩散模型视频生成
VideoBooth是一个AI视频生成项目,利用扩散模型技术基于图像提示创建视频。该项目将静态图像主体转化为动态视频,实现图像到视频的转换。VideoBooth采用两阶段训练方法,提供安装、推理和训练指南。项目还公开了专门数据集,为研究提供资源。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
VILA - 创新的视觉语言模型预训练方法
GithubVILA多模态开源项目视觉语言模型量化预训练
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
awesome-video-generation - 全面汇集视频生成研究的前沿资源库
AI视频Github图像到视频开源项目扩散模型文本到视频视频生成
资源库系统整理视频生成领域的前沿研究论文和资源,包括文本生成视频、图像生成视频、个性化视频生成等多个方向。内容涵盖论文列表、链接、数据集、产品介绍和常见问题解答。这为研究人员和开发者提供了全面了解视频生成技术发展的专业参考。
VideoElevator - 融合文本到图像技术提升AI视频生成质量
GithubVideoElevator开源项目扩散模型文本到图像文本到视频视频生成
VideoElevator是一个开源的AI视频生成项目,通过结合文本到图像和文本到视频的扩散模型来提升生成视频的质量。该项目采用免训练、即插即用的方法,将视频生成过程分为时间运动细化和空间质量提升两个阶段。VideoElevator能在11GB以下显存的GPU上运行,支持多种扩散模型的协作,为高质量AI视频生成提供了新的解决方案。
KandinskyVideo - 先进的开源文本到视频生成模型
GithubKandinsky Video 1.1人工智能开源模型开源项目文本生成视频视频生成技术
KandinskyVideo 1.1是一个开源的文本到视频生成模型,在EvalCrafter基准测试中表现突出。该模型采用三阶段生成流程:初始帧生成、关键帧生成和帧插值,有效提高了视频质量和内容连贯性。除了支持文本到视频转换,KandinskyVideo 1.1还能为输入图像添加动画效果。在视觉质量、文本-视频对齐、动作质量和时间连贯性等方面,该模型都展现出优秀性能,体现了开源文本到视频生成技术的最新发展。
CogVideoX-5b - 专家Transformer驱动的先进文本到视频生成模型
CogVideoXGithubHuggingface人工智能开源项目扩散模型文本到视频模型视频生成
CogVideoX-5b是基于专家Transformer的文本到视频生成模型。它可生成6秒720x480分辨率、8帧/秒的视频,支持226个token的英文提示输入。模型采用BF16精度,推理VRAM消耗低至5GB。通过多项优化,CogVideoX-5b在保持视觉质量的同时提高了推理速度,为视频生成研究与应用提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号