Project Icon

PaddleTS

基于飞桨的开源时序分析库 提供全面深度学习模型

PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。

OpenSTL - OpenSTL:时空预测学习的全面基准和模块化框架
GithubNeurIPS 2023OpenSTLPyTorch开源项目数据集时空预测
OpenSTL是一个全面的时空预测学习基准,涵盖了从合成运动物体轨迹到人体运动、驾驶场景、交通流量和天气预报的多样任务。该框架模块化设计并具有良好的扩展性,支持PyTorch Lightning和原始PyTorch实现。其主要功能包括灵活的代码设计和标准基准,组织严密并易于使用。
Awesome-TimeSeries-SpatioTemporal-LM-LLM - 大型语言模型在时序和时空数据分析中的应用资源
Github基础模型大型语言模型开源项目时空数据时间序列预训练模型
该项目汇集了用于时间序列、时空数据和事件数据分析的大型语言模型及基础模型资源。内容全面涵盖了最新研究进展,包括论文、代码和数据集。涉及领域包括通用时间序列分析、交通、金融、医疗等多个应用方向,以及事件分析、时空图和视频数据等相关主题。项目为研究人员和实践者提供了一个综合性资源库,并持续更新最新成果。
tsfel - 多领域时间序列特征提取Python库
GithubPython库TSFEL开源项目数据分析时间序列特征提取
TSFEL是一个开源的Python库,专门用于时间序列特征提取。该库提供超过65种特征,覆盖统计、时间、频谱和分形等多个领域。TSFEL支持在线和离线使用,具有用户友好的界面和完整的文档。它注重计算效率,并提供复杂度评估功能。TSFEL的设计易于扩展,支持添加自定义特征。这个库适用于研究人员和数据科学家,能够简化时间序列特征提取的过程。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
timeshap - 针对循环模型的时序数据解释框架
GithubShapley值TimeSHAP序列扰动开源项目模型解释递归模型
TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。
awesome-time-series - 时间序列分析资源及工具集锦
GithubPython可视化开源项目数据分析时间序列机器学习
该项目汇集了丰富的时间序列和序列数据处理资源。涵盖Python、R、Java等多种语言的工具库,内容包括特征工程、分割、增强和可视化等方面。同时收录了相关数据库、标注工具、学术论文、开源模型、书籍和课程,为时间序列分析提供全面参考。
tspiral - 优化时间序列预测的Python工具包
GithubPython包scikit-learntspiral开源项目时间序列预测机器学习
tspiral是一个专注于时间序列预测的Python工具包,提供多种优化技术如递归预测、直接预测、堆叠预测和修正预测。它与scikit-learn兼容,支持全局和多变量时间序列预测,并提供简洁API。tspiral将复杂的时间序列问题转化为表格式监督回归任务,方便用户利用scikit-learn生态系统进行预测分析。
InterpretDL - 深度学习模型解释工具包,助力AI可解释性研究
GithubInterpretDLPaddlePaddle可视化开源项目模型解释深度学习
InterpretDL是基于PaddlePaddle的深度学习模型解释工具包,集成多种经典和前沿解释算法。该工具支持计算机视觉和自然语言处理等任务,可帮助用户分析模型内部机制,为模型开发和研究提供洞察。InterpretDL实现了LIME、Grad-CAM、Integrated Gradients等算法,适合研究人员和开发者使用。
nixtla - 精准的时间序列预测和异常检测,适用于多领域的生成式预训练模型
GithubTimeGPT开源项目异常检测时间序列零样本推理预测
TimeGPT是一款生成式预训练模型,专注于时间序列分析,支持零样本推断。该模型可应用于零售、电力、金融、物联网等多个领域,通过简洁的代码实现精准的预测与异常检测。TimeGPT提供灵活的API访问,兼容多种编程语言和平台。基于大规模数据集的训练,它在多种频率下的预测表现卓越,特别适合需要快速、精确时间序列分析的应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号