Project Icon

ClinicalNER

多语言临床命名实体识别模型 提取医疗文本中的药物和用药信息

ClinicalNER是一个基于XLM-R Base的多语言临床命名实体识别模型,通过英语n2c2数据集微调。该模型能从医疗文本中提取药物、剂量、频率、持续时间、用量和剂型等实体信息。在法语评估测试集MedNERF上,ClinicalNER展现了优异的零样本跨语言迁移能力,micro-F1分数达0.804。支持英、法、德、西、意等多种语言,ClinicalNER为临床文本分析提供了实用的工具。

ner-german - 德语命名实体识别模型 集成Flair嵌入和LSTM-CRF技术
FlairGithubHuggingface命名实体识别序列标注开源项目德语模型自然语言处理
这是一个德语命名实体识别(NER)模型,基于Flair框架开发。模型可识别文本中的人名、地名、组织名和其他专有名词,在CoNLL-03德语修订版数据集上F1分数达87.94%。采用Flair嵌入和LSTM-CRF技术,提供高精度的德语NER功能。该模型易于使用,只需几行Python代码即可集成到NLP项目中。
bert-large-NER - BERT大型版命名实体识别模型实现最先进性能
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-large-NER是一个基于BERT大型模型的命名实体识别(NER)工具。该模型在CoNLL-2003数据集上训练,可准确识别地点、组织、人名和其他杂项四类实体。模型支持通过Transformers pipeline轻松集成,适用于多种NER应用场景。在测试集上,bert-large-NER的F1分数达到91.7%,展现了卓越的实体识别能力。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
deid_roberta_i2b2 - RoBERTa模型用于医疗记录去标识化
GithubHIPAAHuggingfaceI2B2RoBERTa医疗记录去标识化开源项目模型自然语言处理
这是一个基于RoBERTa的序列标注模型,专门用于医疗记录去标识化。模型能识别11种受保护健康信息类型,采用BILOU标记方案。在I2B2 2014数据集上训练后,可自动从医疗记录中移除敏感信息。项目提供了使用说明、数据格式要求和示例代码,便于快速应用。
llava-med-v1.5-mistral-7b - Mistral-7B驱动的生物医学视觉语言模型 快速训练的开源研究工具
GithubHuggingfaceLLaVA-Med人工智能模型医学图像识别开源项目模型生物医学视觉语言处理
LLaVA-Med-v1.5-Mistral-7b是一款专注生物医学领域的大型视觉语言模型。它基于PMC-15M数据集开发,采用课程学习方法训练,能处理多种医学图像类型,如显微镜、放射和组织学图像。该模型在PathVQA和VQA-RAD等基准测试中表现优异,为生物医学视觉语言研究提供了重要工具。值得注意的是,这是一个仅用于研究目的的开源项目,仅支持英语处理,不适用于临床环境。
GLiNER - 通用轻量级命名实体识别模型
BERTGLiNERGithub命名实体识别开源项目机器学习自然语言处理
GLiNER是一个通用轻量级的命名实体识别模型,采用双向转换器编码器架构。它能识别任意类型的实体,填补了传统NER模型和大型语言模型之间的空白。GLiNER具有灵活性高、体积小、效率高的特点,适用于资源受限的场景。该模型支持自定义实体类型,可应用于信息提取、文本分类等多种自然语言处理任务。
ner-bert-german - 基于BERT的德语命名实体识别模型实现精准NER分析
BERTGithubHuggingface命名实体识别开源项目德语机器学习模型自然语言处理
该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。
distilbert-NER - 一个精简、高效的命名实体识别模型
AI模型CoNLL-2003DistilBERTGithubHuggingfacedistilbert-NER命名实体识别开源项目模型
distilbert-NER是DistilBERT的精简版本,专为命名实体识别(NER)任务优化,能够识别地点、组织、人物等实体。相比BERT,参数更少,具备更小的模型体积和更高的速度,并在CoNLL-2003数据集上精细调优,具备良好的精度和性能。
ICD-10-Code-Prediction - 基于临床BERT实现医疗诊断代码自动预测
BERTGithubHuggingfaceICD-10临床预测医疗诊断开源项目模型自然语言处理
这是一个基于MIMIC临床数据训练的BERT模型,用于自动预测医疗诊断文本对应的ICD-10代码。模型通过Transformers库实现,支持输出前5个最可能的预测结果。该工具可用于辅助医疗诊断编码工作,提升工作效率。
camembert-ner-with-dates - 基于camemBERT的法语命名实体识别模型集成日期标记功能
CamemBERTGithubHuggingFaceHuggingface命名实体识别开源项目日期标注模型自然语言处理
camembert-ner-with-dates是一个增强版的法语命名实体识别模型,基于camemBERT架构,新增日期标记功能。该模型在扩展的wikiner-fr数据集(约17万句)上训练,支持识别组织、人名、地点、杂项和日期等实体。在混合测试数据上,模型达到83%的F1分数,优于传统日期解析方法。用户可通过Hugging Face平台轻松使用该模型,总体精确度、召回率和F1分数均达到0.928。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号