Project Icon

bias_identificaiton45

基于RoBERTa的10类偏见识别模型

该偏见识别模型基于RoBERTa架构,通过微调实现对10种偏见类型的分类。涵盖范围包括种族、性别、年龄等多个维度,在测试集上准确率达98.32%。模型可应用于自然语言处理研究,特别是偏见分析领域。支持通过Hugging Face transformers库快速部署使用。

twitter-roberta-base-sentiment-latest - RoBERTa基础的推特情感分析模型 支持英文社交媒体文本
GithubHuggingfaceRoBERTaTweetEvalTwitter开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的推特情感分析模型,通过1.24亿条推文训练并针对情感分析任务微调。模型可将英文推文分类为积极、中性或消极,支持Transformers库集成。适用于社交媒体分析和舆情监测等场景,是TweetNLP项目的组成部分,体现了社交媒体自然语言处理的最新进展。
twitter-roberta-base-emotion - 基于RoBERTa的推特情绪识别与分析模型
GithubHuggingfaceRoBERTa开源项目情感识别推特数据分析模型深度学习自然语言处理
twitter-roberta-base-emotion是一个基于RoBERTa架构的情绪识别模型,经过5800万条推特数据训练。模型可识别喜悦、乐观、愤怒和悲伤等情绪类型,并通过TweetEval基准进行了微调。支持Python接口调用,适用于文本情感分析任务。
roberta-fake-news-classification - 基于RoBERTa的新闻真假识别模型
GithubHuggingfaceKaggleroberta-base分类开源项目模型虚假新闻
此模型使用roberta-base进行微调,旨在识别虚假新闻,在特定数据集上达到100%的准确率。模型可供下载,并易于在代码中集成,通过输入新闻标题和内容来验证新闻的真实性。此外,Gradio接口提供了实时测试功能。
roberta-base-suicide-prediction-phr - RoBERTa自然语言处理模型实现文本自杀倾向识别
GithubHuggingfaceroberta-base开源项目文本分类模型深度学习自杀倾向预测模型
该模型通过对Reddit社交平台的文本数据进行分析训练,利用RoBERTa自然语言处理技术识别文本中的自杀倾向。测试结果显示模型具有96.5%的准确率、96.6%的召回率和96.4%的精确率。项目采用严格的文本清洗和预处理流程,可应用于心理健康监测领域的自动化分析。
roberta_toxicity_classifier - RoBERTa模型提供准确的有害评论分类功能
GithubHuggingfaceJigsawRoBERTa平行语料库开源项目有毒评论分类模型自然语言处理
本项目基于RoBERTa开发了一个有害评论分类模型。该模型在约200万条Jigsaw数据集样本上进行微调,测试集表现优异,AUC-ROC达0.98,F1分数为0.76。模型易于集成到Python项目中,可用于文本有害内容检测。项目提供使用说明和引用信息,便于研究人员和开发者在此领域深入探索。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
robust-sentiment-analysis - 使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
GithubHuggingfacedistilBERT合成数据客户反馈开源项目情感分析模型社交媒体分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
twitter-xlm-roberta-base-sentiment - 基于XLM-roBERTa的多语言推特情感分析模型
GithubHuggingfaceTwitterXLM-roBERTa多语言情感分析开源项目情感分类模型自然语言处理
这是一个基于XLM-roBERTa的多语言推特情感分析模型,经过约1.98亿条推文预训练,并针对8种语言的情感分析任务进行了微调。该模型可以轻松集成到NLP管道中,适用于多语言社交媒体文本的情感分类,支持阿拉伯语、英语、法语、德语、印地语、意大利语、西班牙语和葡萄牙语。
sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
distilroberta-base-rejection-v1 - DistilRoBERTa模型用于检测LLM输出拒绝响应 准确率98.87%
GithubHuggingfaceLLMProtectAIdistilroberta-base开源项目拒绝检测文本分类模型
这是一个基于DistilRoBERTa的微调模型,用于检测大型语言模型(LLM)输出中的拒绝响应。模型将输入分为正常输出和拒绝检测两类,评估准确率达98.87%。采用Apache 2.0许可证,支持Transformers和ONNX运行时,易于集成。适用于内容审核和安全防护,可识别LLM对不当内容的拒绝响应。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号